Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments
- Autores
- Maldonado, Paula Soledad; Ruiz, Juan Jose; Saulo, Andrea Celeste
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Specification of suitable initial conditions to accurately forecast high-impact weather events associated with intense thunderstorms still poses a significant challenge for convective-scale forecasting. Radar data assimilation has been showing encouraging results to produce an accurate estimate of the state of the atmosphere at the mesoscale, as it combines high-spatiotemporal-resolution observations with convection-permitting numerical weather prediction models. However, many open questions remain regarding the configuration of state-of-the-art data assimilation systems at the mesoscale and their potential impact upon short-range weather forecasts. In this work, several observing system simulation experiments of a mesoscale convective system were performed to assess the sensitivity of the local ensemble transform Kalman filter to both relaxation-to-prior spread (RTPS) inflation and horizontal localization of the error covariance matrix. Realistic large-scale forcing and model errors have been taken into account in the simulation of reflectivity and Doppler velocity observations. Overall, the most accurate analyses in terms of RMSE were produced with a relatively small horizontal localization cutoff radius (;3.6–7.3 km) and large RTPS inflation parameter (;0.9–0.95). Additionally, the impact of horizontal localization on short-range ensemble forecast was larger compared to inflation, almost doubling the lead times up to which the effect of using a more accurate state to initialize the forecast persisted.
Fil: Maldonado, Paula Soledad. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Ruiz, Juan Jose. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Saulo, Andrea Celeste. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
data assimilation
radar
kalman filter
localization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143672
Ver los metadatos del registro completo
id |
CONICETDig_f763ddd12fc5a9e6d4b2d52460b75c57 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143672 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experimentsMaldonado, Paula SoledadRuiz, Juan JoseSaulo, Andrea Celestedata assimilationradarkalman filterlocalizationhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Specification of suitable initial conditions to accurately forecast high-impact weather events associated with intense thunderstorms still poses a significant challenge for convective-scale forecasting. Radar data assimilation has been showing encouraging results to produce an accurate estimate of the state of the atmosphere at the mesoscale, as it combines high-spatiotemporal-resolution observations with convection-permitting numerical weather prediction models. However, many open questions remain regarding the configuration of state-of-the-art data assimilation systems at the mesoscale and their potential impact upon short-range weather forecasts. In this work, several observing system simulation experiments of a mesoscale convective system were performed to assess the sensitivity of the local ensemble transform Kalman filter to both relaxation-to-prior spread (RTPS) inflation and horizontal localization of the error covariance matrix. Realistic large-scale forcing and model errors have been taken into account in the simulation of reflectivity and Doppler velocity observations. Overall, the most accurate analyses in terms of RMSE were produced with a relatively small horizontal localization cutoff radius (;3.6–7.3 km) and large RTPS inflation parameter (;0.9–0.95). Additionally, the impact of horizontal localization on short-range ensemble forecast was larger compared to inflation, almost doubling the lead times up to which the effect of using a more accurate state to initialize the forecast persisted.Fil: Maldonado, Paula Soledad. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Ruiz, Juan Jose. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Saulo, Andrea Celeste. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Meteorological Society2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143672Maldonado, Paula Soledad; Ruiz, Juan Jose; Saulo, Andrea Celeste; Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments; American Meteorological Society; Weather and Forecasting; 35; 4; 5-2020; 1345-13620882-8156CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/10.1175/WAF-D-19-0161.1info:eu-repo/semantics/altIdentifier/doi/10.1175/WAF-D-19-0161.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:58Zoai:ri.conicet.gov.ar:11336/143672instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:58.969CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments |
title |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments |
spellingShingle |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments Maldonado, Paula Soledad data assimilation radar kalman filter localization |
title_short |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments |
title_full |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments |
title_fullStr |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments |
title_full_unstemmed |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments |
title_sort |
Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments |
dc.creator.none.fl_str_mv |
Maldonado, Paula Soledad Ruiz, Juan Jose Saulo, Andrea Celeste |
author |
Maldonado, Paula Soledad |
author_facet |
Maldonado, Paula Soledad Ruiz, Juan Jose Saulo, Andrea Celeste |
author_role |
author |
author2 |
Ruiz, Juan Jose Saulo, Andrea Celeste |
author2_role |
author author |
dc.subject.none.fl_str_mv |
data assimilation radar kalman filter localization |
topic |
data assimilation radar kalman filter localization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Specification of suitable initial conditions to accurately forecast high-impact weather events associated with intense thunderstorms still poses a significant challenge for convective-scale forecasting. Radar data assimilation has been showing encouraging results to produce an accurate estimate of the state of the atmosphere at the mesoscale, as it combines high-spatiotemporal-resolution observations with convection-permitting numerical weather prediction models. However, many open questions remain regarding the configuration of state-of-the-art data assimilation systems at the mesoscale and their potential impact upon short-range weather forecasts. In this work, several observing system simulation experiments of a mesoscale convective system were performed to assess the sensitivity of the local ensemble transform Kalman filter to both relaxation-to-prior spread (RTPS) inflation and horizontal localization of the error covariance matrix. Realistic large-scale forcing and model errors have been taken into account in the simulation of reflectivity and Doppler velocity observations. Overall, the most accurate analyses in terms of RMSE were produced with a relatively small horizontal localization cutoff radius (;3.6–7.3 km) and large RTPS inflation parameter (;0.9–0.95). Additionally, the impact of horizontal localization on short-range ensemble forecast was larger compared to inflation, almost doubling the lead times up to which the effect of using a more accurate state to initialize the forecast persisted. Fil: Maldonado, Paula Soledad. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Ruiz, Juan Jose. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina Fil: Saulo, Andrea Celeste. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Specification of suitable initial conditions to accurately forecast high-impact weather events associated with intense thunderstorms still poses a significant challenge for convective-scale forecasting. Radar data assimilation has been showing encouraging results to produce an accurate estimate of the state of the atmosphere at the mesoscale, as it combines high-spatiotemporal-resolution observations with convection-permitting numerical weather prediction models. However, many open questions remain regarding the configuration of state-of-the-art data assimilation systems at the mesoscale and their potential impact upon short-range weather forecasts. In this work, several observing system simulation experiments of a mesoscale convective system were performed to assess the sensitivity of the local ensemble transform Kalman filter to both relaxation-to-prior spread (RTPS) inflation and horizontal localization of the error covariance matrix. Realistic large-scale forcing and model errors have been taken into account in the simulation of reflectivity and Doppler velocity observations. Overall, the most accurate analyses in terms of RMSE were produced with a relatively small horizontal localization cutoff radius (;3.6–7.3 km) and large RTPS inflation parameter (;0.9–0.95). Additionally, the impact of horizontal localization on short-range ensemble forecast was larger compared to inflation, almost doubling the lead times up to which the effect of using a more accurate state to initialize the forecast persisted. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143672 Maldonado, Paula Soledad; Ruiz, Juan Jose; Saulo, Andrea Celeste; Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments; American Meteorological Society; Weather and Forecasting; 35; 4; 5-2020; 1345-1362 0882-8156 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143672 |
identifier_str_mv |
Maldonado, Paula Soledad; Ruiz, Juan Jose; Saulo, Andrea Celeste; Parameter sensitivity of the WRF–LETKF system for assimilation of radar observations: Imperfect-model observing system simulation experiments; American Meteorological Society; Weather and Forecasting; 35; 4; 5-2020; 1345-1362 0882-8156 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.ametsoc.org/doi/10.1175/WAF-D-19-0161.1 info:eu-repo/semantics/altIdentifier/doi/10.1175/WAF-D-19-0161.1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Meteorological Society |
publisher.none.fl_str_mv |
American Meteorological Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269005281230848 |
score |
13.13397 |