Estimating parameters with ensemble-based data assimilation : a review.

Autores
Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Weather forecast and earth system models usually have a number of parameters, which are often optimizedmanually by trial and error. Several studies have proposed objective methods to estimate model parameters using dataassimilation techniques. This paper provides a review of the previous studies and illustrates the application ofensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolutionatmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our resultshighlight that data assimilation techniques are efficient optimization methods which can be used for parameterestimation in complex geophysical models and that the estimated parameters have a positive effect on short-tomedium-range numerical weather prediction.
Fil: Ruiz, Juan Jose. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;
Fil: Miyoshi, Takemasa. University of Maryland; Estados Unidos de América;
Materia
PARAMETER ESTIMATION
DATA ASSIMILATION
ENSEMBLE KALMAN FILTER
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/2434

id CONICETDig_36268f6c6a141e03e9980f0929992e9f
oai_identifier_str oai:ri.conicet.gov.ar:11336/2434
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Estimating parameters with ensemble-based data assimilation : a review.Ruiz, Juan JosePulido, Manuel ArturoMiyoshi, TakemasaPARAMETER ESTIMATIONDATA ASSIMILATIONENSEMBLE KALMAN FILTERhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Weather forecast and earth system models usually have a number of parameters, which are often optimizedmanually by trial and error. Several studies have proposed objective methods to estimate model parameters using dataassimilation techniques. This paper provides a review of the previous studies and illustrates the application ofensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolutionatmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our resultshighlight that data assimilation techniques are efficient optimization methods which can be used for parameterestimation in complex geophysical models and that the estimated parameters have a positive effect on short-tomedium-range numerical weather prediction.Fil: Ruiz, Juan Jose. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;Fil: Miyoshi, Takemasa. University of Maryland; Estados Unidos de América;Meteorological Soc Jpn2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2434Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa; Estimating parameters with ensemble-based data assimilation : a review.; Meteorological Soc Jpn; Journal Of The Meteorological Society Of Japan; 91; 2; 1-2013; 79-990026-1165enginfo:eu-repo/semantics/altIdentifier/url/https://www.jstage.jst.go.jp/article/jmsj/91/2/91_2013-201/_articleinfo:eu-repo/semantics/altIdentifier/doi/10.2151/jmsj.2013-201info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:17Zoai:ri.conicet.gov.ar:11336/2434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:18.058CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Estimating parameters with ensemble-based data assimilation : a review.
title Estimating parameters with ensemble-based data assimilation : a review.
spellingShingle Estimating parameters with ensemble-based data assimilation : a review.
Ruiz, Juan Jose
PARAMETER ESTIMATION
DATA ASSIMILATION
ENSEMBLE KALMAN FILTER
title_short Estimating parameters with ensemble-based data assimilation : a review.
title_full Estimating parameters with ensemble-based data assimilation : a review.
title_fullStr Estimating parameters with ensemble-based data assimilation : a review.
title_full_unstemmed Estimating parameters with ensemble-based data assimilation : a review.
title_sort Estimating parameters with ensemble-based data assimilation : a review.
dc.creator.none.fl_str_mv Ruiz, Juan Jose
Pulido, Manuel Arturo
Miyoshi, Takemasa
author Ruiz, Juan Jose
author_facet Ruiz, Juan Jose
Pulido, Manuel Arturo
Miyoshi, Takemasa
author_role author
author2 Pulido, Manuel Arturo
Miyoshi, Takemasa
author2_role author
author
dc.subject.none.fl_str_mv PARAMETER ESTIMATION
DATA ASSIMILATION
ENSEMBLE KALMAN FILTER
topic PARAMETER ESTIMATION
DATA ASSIMILATION
ENSEMBLE KALMAN FILTER
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Weather forecast and earth system models usually have a number of parameters, which are often optimizedmanually by trial and error. Several studies have proposed objective methods to estimate model parameters using dataassimilation techniques. This paper provides a review of the previous studies and illustrates the application ofensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolutionatmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our resultshighlight that data assimilation techniques are efficient optimization methods which can be used for parameterestimation in complex geophysical models and that the estimated parameters have a positive effect on short-tomedium-range numerical weather prediction.
Fil: Ruiz, Juan Jose. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;
Fil: Miyoshi, Takemasa. University of Maryland; Estados Unidos de América;
description Weather forecast and earth system models usually have a number of parameters, which are often optimizedmanually by trial and error. Several studies have proposed objective methods to estimate model parameters using dataassimilation techniques. This paper provides a review of the previous studies and illustrates the application ofensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolutionatmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our resultshighlight that data assimilation techniques are efficient optimization methods which can be used for parameterestimation in complex geophysical models and that the estimated parameters have a positive effect on short-tomedium-range numerical weather prediction.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/2434
Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa; Estimating parameters with ensemble-based data assimilation : a review.; Meteorological Soc Jpn; Journal Of The Meteorological Society Of Japan; 91; 2; 1-2013; 79-99
0026-1165
url http://hdl.handle.net/11336/2434
identifier_str_mv Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa; Estimating parameters with ensemble-based data assimilation : a review.; Meteorological Soc Jpn; Journal Of The Meteorological Society Of Japan; 91; 2; 1-2013; 79-99
0026-1165
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.jstage.jst.go.jp/article/jmsj/91/2/91_2013-201/_article
info:eu-repo/semantics/altIdentifier/doi/10.2151/jmsj.2013-201
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Meteorological Soc Jpn
publisher.none.fl_str_mv Meteorological Soc Jpn
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268849462837248
score 13.13397