Estimating parameters with ensemble-based data assimilation : a review.
- Autores
- Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Weather forecast and earth system models usually have a number of parameters, which are often optimizedmanually by trial and error. Several studies have proposed objective methods to estimate model parameters using dataassimilation techniques. This paper provides a review of the previous studies and illustrates the application ofensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolutionatmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our resultshighlight that data assimilation techniques are efficient optimization methods which can be used for parameterestimation in complex geophysical models and that the estimated parameters have a positive effect on short-tomedium-range numerical weather prediction.
Fil: Ruiz, Juan Jose. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;
Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;
Fil: Miyoshi, Takemasa. University of Maryland; Estados Unidos de América; - Materia
-
PARAMETER ESTIMATION
DATA ASSIMILATION
ENSEMBLE KALMAN FILTER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/2434
Ver los metadatos del registro completo
id |
CONICETDig_36268f6c6a141e03e9980f0929992e9f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/2434 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimating parameters with ensemble-based data assimilation : a review.Ruiz, Juan JosePulido, Manuel ArturoMiyoshi, TakemasaPARAMETER ESTIMATIONDATA ASSIMILATIONENSEMBLE KALMAN FILTERhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Weather forecast and earth system models usually have a number of parameters, which are often optimizedmanually by trial and error. Several studies have proposed objective methods to estimate model parameters using dataassimilation techniques. This paper provides a review of the previous studies and illustrates the application ofensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolutionatmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our resultshighlight that data assimilation techniques are efficient optimization methods which can be used for parameterestimation in complex geophysical models and that the estimated parameters have a positive effect on short-tomedium-range numerical weather prediction.Fil: Ruiz, Juan Jose. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina;Fil: Miyoshi, Takemasa. University of Maryland; Estados Unidos de América;Meteorological Soc Jpn2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/2434Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa; Estimating parameters with ensemble-based data assimilation : a review.; Meteorological Soc Jpn; Journal Of The Meteorological Society Of Japan; 91; 2; 1-2013; 79-990026-1165enginfo:eu-repo/semantics/altIdentifier/url/https://www.jstage.jst.go.jp/article/jmsj/91/2/91_2013-201/_articleinfo:eu-repo/semantics/altIdentifier/doi/10.2151/jmsj.2013-201info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:17Zoai:ri.conicet.gov.ar:11336/2434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:18.058CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimating parameters with ensemble-based data assimilation : a review. |
title |
Estimating parameters with ensemble-based data assimilation : a review. |
spellingShingle |
Estimating parameters with ensemble-based data assimilation : a review. Ruiz, Juan Jose PARAMETER ESTIMATION DATA ASSIMILATION ENSEMBLE KALMAN FILTER |
title_short |
Estimating parameters with ensemble-based data assimilation : a review. |
title_full |
Estimating parameters with ensemble-based data assimilation : a review. |
title_fullStr |
Estimating parameters with ensemble-based data assimilation : a review. |
title_full_unstemmed |
Estimating parameters with ensemble-based data assimilation : a review. |
title_sort |
Estimating parameters with ensemble-based data assimilation : a review. |
dc.creator.none.fl_str_mv |
Ruiz, Juan Jose Pulido, Manuel Arturo Miyoshi, Takemasa |
author |
Ruiz, Juan Jose |
author_facet |
Ruiz, Juan Jose Pulido, Manuel Arturo Miyoshi, Takemasa |
author_role |
author |
author2 |
Pulido, Manuel Arturo Miyoshi, Takemasa |
author2_role |
author author |
dc.subject.none.fl_str_mv |
PARAMETER ESTIMATION DATA ASSIMILATION ENSEMBLE KALMAN FILTER |
topic |
PARAMETER ESTIMATION DATA ASSIMILATION ENSEMBLE KALMAN FILTER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Weather forecast and earth system models usually have a number of parameters, which are often optimizedmanually by trial and error. Several studies have proposed objective methods to estimate model parameters using dataassimilation techniques. This paper provides a review of the previous studies and illustrates the application ofensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolutionatmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our resultshighlight that data assimilation techniques are efficient optimization methods which can be used for parameterestimation in complex geophysical models and that the estimated parameters have a positive effect on short-tomedium-range numerical weather prediction. Fil: Ruiz, Juan Jose. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina; Fil: Pulido, Manuel Arturo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Nordeste. Instituto de Modelado e Innovación Tecnológica; Argentina; Fil: Miyoshi, Takemasa. University of Maryland; Estados Unidos de América; |
description |
Weather forecast and earth system models usually have a number of parameters, which are often optimizedmanually by trial and error. Several studies have proposed objective methods to estimate model parameters using dataassimilation techniques. This paper provides a review of the previous studies and illustrates the application ofensemble-based data assimilation to the estimation of temporally varying model parameters in a simple low-resolutionatmospheric general circulation model known as the SPEEDY model. As shown in previous studies, our resultshighlight that data assimilation techniques are efficient optimization methods which can be used for parameterestimation in complex geophysical models and that the estimated parameters have a positive effect on short-tomedium-range numerical weather prediction. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/2434 Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa; Estimating parameters with ensemble-based data assimilation : a review.; Meteorological Soc Jpn; Journal Of The Meteorological Society Of Japan; 91; 2; 1-2013; 79-99 0026-1165 |
url |
http://hdl.handle.net/11336/2434 |
identifier_str_mv |
Ruiz, Juan Jose; Pulido, Manuel Arturo; Miyoshi, Takemasa; Estimating parameters with ensemble-based data assimilation : a review.; Meteorological Soc Jpn; Journal Of The Meteorological Society Of Japan; 91; 2; 1-2013; 79-99 0026-1165 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.jstage.jst.go.jp/article/jmsj/91/2/91_2013-201/_article info:eu-repo/semantics/altIdentifier/doi/10.2151/jmsj.2013-201 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR) https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Meteorological Soc Jpn |
publisher.none.fl_str_mv |
Meteorological Soc Jpn |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268849462837248 |
score |
13.13397 |