Statistical complexity and classical–quantum frontier

Autores
Branada, R.; Pennini, Flavia Catalina; Plastino, A.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The classical limit of quantum mechanics (CLQM) is a fascinating subject of perennial interest. Here we deal with it in a novel way for two of the simplest conceivable systems: the classical ideal gas (IG) and the Einstein crystal (EC). Even if at first sight one may not believe that something new could be said about them, it will be seen that some statistical quantifiers do. In particular, the statistical complexity , seems to signal the CLQM’s zone. The associated two maxima (versus temperature), for, respectively, the IG and the CG, almost coincide.
Fil: Branada, R.. Universidad Católica del Norte; Chile
Fil: Pennini, Flavia Catalina. Universidad Católica del Norte; Chile. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. École Polytechnique Fédérale de Lausanne; Suiza
Materia
CLASSICAL LIMIT
DISEQUILIBRIUM
STATISTICAL COMPLEXITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/114245

id CONICETDig_f6f15259f6ddf7b48f064339cbb7971b
oai_identifier_str oai:ri.conicet.gov.ar:11336/114245
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Statistical complexity and classical–quantum frontierBranada, R.Pennini, Flavia CatalinaPlastino, A.CLASSICAL LIMITDISEQUILIBRIUMSTATISTICAL COMPLEXITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The classical limit of quantum mechanics (CLQM) is a fascinating subject of perennial interest. Here we deal with it in a novel way for two of the simplest conceivable systems: the classical ideal gas (IG) and the Einstein crystal (EC). Even if at first sight one may not believe that something new could be said about them, it will be seen that some statistical quantifiers do. In particular, the statistical complexity , seems to signal the CLQM’s zone. The associated two maxima (versus temperature), for, respectively, the IG and the CG, almost coincide.Fil: Branada, R.. Universidad Católica del Norte; ChileFil: Pennini, Flavia Catalina. Universidad Católica del Norte; Chile. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. École Polytechnique Fédérale de Lausanne; SuizaElsevier Science2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114245Branada, R.; Pennini, Flavia Catalina; Plastino, A.; Statistical complexity and classical–quantum frontier; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 511; 12-2018; 18-260378-4371CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0378437118309014info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2018.07.037info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:25Zoai:ri.conicet.gov.ar:11336/114245instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:25.609CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Statistical complexity and classical–quantum frontier
title Statistical complexity and classical–quantum frontier
spellingShingle Statistical complexity and classical–quantum frontier
Branada, R.
CLASSICAL LIMIT
DISEQUILIBRIUM
STATISTICAL COMPLEXITY
title_short Statistical complexity and classical–quantum frontier
title_full Statistical complexity and classical–quantum frontier
title_fullStr Statistical complexity and classical–quantum frontier
title_full_unstemmed Statistical complexity and classical–quantum frontier
title_sort Statistical complexity and classical–quantum frontier
dc.creator.none.fl_str_mv Branada, R.
Pennini, Flavia Catalina
Plastino, A.
author Branada, R.
author_facet Branada, R.
Pennini, Flavia Catalina
Plastino, A.
author_role author
author2 Pennini, Flavia Catalina
Plastino, A.
author2_role author
author
dc.subject.none.fl_str_mv CLASSICAL LIMIT
DISEQUILIBRIUM
STATISTICAL COMPLEXITY
topic CLASSICAL LIMIT
DISEQUILIBRIUM
STATISTICAL COMPLEXITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The classical limit of quantum mechanics (CLQM) is a fascinating subject of perennial interest. Here we deal with it in a novel way for two of the simplest conceivable systems: the classical ideal gas (IG) and the Einstein crystal (EC). Even if at first sight one may not believe that something new could be said about them, it will be seen that some statistical quantifiers do. In particular, the statistical complexity , seems to signal the CLQM’s zone. The associated two maxima (versus temperature), for, respectively, the IG and the CG, almost coincide.
Fil: Branada, R.. Universidad Católica del Norte; Chile
Fil: Pennini, Flavia Catalina. Universidad Católica del Norte; Chile. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Plastino, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. École Polytechnique Fédérale de Lausanne; Suiza
description The classical limit of quantum mechanics (CLQM) is a fascinating subject of perennial interest. Here we deal with it in a novel way for two of the simplest conceivable systems: the classical ideal gas (IG) and the Einstein crystal (EC). Even if at first sight one may not believe that something new could be said about them, it will be seen that some statistical quantifiers do. In particular, the statistical complexity , seems to signal the CLQM’s zone. The associated two maxima (versus temperature), for, respectively, the IG and the CG, almost coincide.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/114245
Branada, R.; Pennini, Flavia Catalina; Plastino, A.; Statistical complexity and classical–quantum frontier; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 511; 12-2018; 18-26
0378-4371
CONICET Digital
CONICET
url http://hdl.handle.net/11336/114245
identifier_str_mv Branada, R.; Pennini, Flavia Catalina; Plastino, A.; Statistical complexity and classical–quantum frontier; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 511; 12-2018; 18-26
0378-4371
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0378437118309014
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2018.07.037
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614013005070336
score 13.070432