Structural Statistical Quantifiers and Thermal Features of Quantum Systems

Autores
Pennini, Flavia; Plastino, Ángel Luis; Plastino, Ángel Ricardo; Hernando, Alberto
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals primarily with relatively novel thermal quantifiers called disequilibrium and statistical complexity, whose role is growing in different disciplines of physics and other sciences. These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials of the three authors who advanced them. We wish to establish information-theoretical bridges between LMC structural quantifiers and (1) Thermal Heisenberg uncertainties DxDp (at temperature T); (2) A nuclear physics fermion model. Having achieved such purposes, we determine to what an extent our bridges can be extended to both the semi-classical and classical realms. In addition, we find a strict bound relating a special LMC structural quantifier to quantum uncertainties.
Facultad de Ciencias Exactas
Materia
Física
Thermal uncertainties
Disequilibrium
Semi-classical distributions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/118929

id SEDICI_6ee4445bf76e4d63a739c67d77defb15
oai_identifier_str oai:sedici.unlp.edu.ar:10915/118929
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Structural Statistical Quantifiers and Thermal Features of Quantum SystemsPennini, FlaviaPlastino, Ángel LuisPlastino, Ángel RicardoHernando, AlbertoFísicaThermal uncertaintiesDisequilibriumSemi-classical distributionsThis paper deals primarily with relatively novel thermal quantifiers called disequilibrium and statistical complexity, whose role is growing in different disciplines of physics and other sciences. These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials of the three authors who advanced them. We wish to establish information-theoretical bridges between LMC structural quantifiers and (1) Thermal Heisenberg uncertainties DxDp (at temperature T); (2) A nuclear physics fermion model. Having achieved such purposes, we determine to what an extent our bridges can be extended to both the semi-classical and classical realms. In addition, we find a strict bound relating a special LMC structural quantifier to quantum uncertainties.Facultad de Ciencias Exactas2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/118929enginfo:eu-repo/semantics/altIdentifier/issn/1099-4300info:eu-repo/semantics/altIdentifier/doi/10.3390/e23010019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:00Zoai:sedici.unlp.edu.ar:10915/118929Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:00.864SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Structural Statistical Quantifiers and Thermal Features of Quantum Systems
title Structural Statistical Quantifiers and Thermal Features of Quantum Systems
spellingShingle Structural Statistical Quantifiers and Thermal Features of Quantum Systems
Pennini, Flavia
Física
Thermal uncertainties
Disequilibrium
Semi-classical distributions
title_short Structural Statistical Quantifiers and Thermal Features of Quantum Systems
title_full Structural Statistical Quantifiers and Thermal Features of Quantum Systems
title_fullStr Structural Statistical Quantifiers and Thermal Features of Quantum Systems
title_full_unstemmed Structural Statistical Quantifiers and Thermal Features of Quantum Systems
title_sort Structural Statistical Quantifiers and Thermal Features of Quantum Systems
dc.creator.none.fl_str_mv Pennini, Flavia
Plastino, Ángel Luis
Plastino, Ángel Ricardo
Hernando, Alberto
author Pennini, Flavia
author_facet Pennini, Flavia
Plastino, Ángel Luis
Plastino, Ángel Ricardo
Hernando, Alberto
author_role author
author2 Plastino, Ángel Luis
Plastino, Ángel Ricardo
Hernando, Alberto
author2_role author
author
author
dc.subject.none.fl_str_mv Física
Thermal uncertainties
Disequilibrium
Semi-classical distributions
topic Física
Thermal uncertainties
Disequilibrium
Semi-classical distributions
dc.description.none.fl_txt_mv This paper deals primarily with relatively novel thermal quantifiers called disequilibrium and statistical complexity, whose role is growing in different disciplines of physics and other sciences. These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials of the three authors who advanced them. We wish to establish information-theoretical bridges between LMC structural quantifiers and (1) Thermal Heisenberg uncertainties DxDp (at temperature T); (2) A nuclear physics fermion model. Having achieved such purposes, we determine to what an extent our bridges can be extended to both the semi-classical and classical realms. In addition, we find a strict bound relating a special LMC structural quantifier to quantum uncertainties.
Facultad de Ciencias Exactas
description This paper deals primarily with relatively novel thermal quantifiers called disequilibrium and statistical complexity, whose role is growing in different disciplines of physics and other sciences. These quantifiers are called L. Ruiz, Mancini, and Calvet (LMC) quantifiers, following the initials of the three authors who advanced them. We wish to establish information-theoretical bridges between LMC structural quantifiers and (1) Thermal Heisenberg uncertainties DxDp (at temperature T); (2) A nuclear physics fermion model. Having achieved such purposes, we determine to what an extent our bridges can be extended to both the semi-classical and classical realms. In addition, we find a strict bound relating a special LMC structural quantifier to quantum uncertainties.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/118929
url http://sedici.unlp.edu.ar/handle/10915/118929
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1099-4300
info:eu-repo/semantics/altIdentifier/doi/10.3390/e23010019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616158625398784
score 13.070432