Distances in probability space and the statistical complexity setup

Autores
Kowalski, A.M.; Martín, M.T.; Plastino, A.; Rosso, O.A.; Casas, M.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Fuente
Entropy 2011;13(6):1055-1075
Materia
Disequilibrium
Generalized statistical complexity
Information theory
Quantum chaos
Selection of the probability distribution
Semiclassical theories
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_10994300_v13_n6_p1055_Kowalski

id BDUBAFCEN_c3a64b4408aa818e91290685fa3bc078
oai_identifier_str paperaa:paper_10994300_v13_n6_p1055_Kowalski
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Distances in probability space and the statistical complexity setupKowalski, A.M.Martín, M.T.Plastino, A.Rosso, O.A.Casas, M.DisequilibriumGeneralized statistical complexityInformation theoryQuantum chaosSelection of the probability distributionSemiclassical theoriesStatistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. © 2011 by the authors; licensee MDPI, Basel, Switzerland.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10994300_v13_n6_p1055_KowalskiEntropy 2011;13(6):1055-1075reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_10994300_v13_n6_p1055_KowalskiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.319Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Distances in probability space and the statistical complexity setup
title Distances in probability space and the statistical complexity setup
spellingShingle Distances in probability space and the statistical complexity setup
Kowalski, A.M.
Disequilibrium
Generalized statistical complexity
Information theory
Quantum chaos
Selection of the probability distribution
Semiclassical theories
title_short Distances in probability space and the statistical complexity setup
title_full Distances in probability space and the statistical complexity setup
title_fullStr Distances in probability space and the statistical complexity setup
title_full_unstemmed Distances in probability space and the statistical complexity setup
title_sort Distances in probability space and the statistical complexity setup
dc.creator.none.fl_str_mv Kowalski, A.M.
Martín, M.T.
Plastino, A.
Rosso, O.A.
Casas, M.
author Kowalski, A.M.
author_facet Kowalski, A.M.
Martín, M.T.
Plastino, A.
Rosso, O.A.
Casas, M.
author_role author
author2 Martín, M.T.
Plastino, A.
Rosso, O.A.
Casas, M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Disequilibrium
Generalized statistical complexity
Information theory
Quantum chaos
Selection of the probability distribution
Semiclassical theories
topic Disequilibrium
Generalized statistical complexity
Information theory
Quantum chaos
Selection of the probability distribution
Semiclassical theories
dc.description.none.fl_txt_mv Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
description Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_10994300_v13_n6_p1055_Kowalski
url http://hdl.handle.net/20.500.12110/paper_10994300_v13_n6_p1055_Kowalski
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Entropy 2011;13(6):1055-1075
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739465584640
score 13.070432