Distances in probability space and the statistical complexity setup
- Autores
- Kowalski, A.M.; Martín, M.T.; Plastino, A.; Rosso, O.A.; Casas, M.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
- Fuente
- Entropy 2011;13(6):1055-1075
- Materia
-
Disequilibrium
Generalized statistical complexity
Information theory
Quantum chaos
Selection of the probability distribution
Semiclassical theories - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_10994300_v13_n6_p1055_Kowalski
Ver los metadatos del registro completo
id |
BDUBAFCEN_c3a64b4408aa818e91290685fa3bc078 |
---|---|
oai_identifier_str |
paperaa:paper_10994300_v13_n6_p1055_Kowalski |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Distances in probability space and the statistical complexity setupKowalski, A.M.Martín, M.T.Plastino, A.Rosso, O.A.Casas, M.DisequilibriumGeneralized statistical complexityInformation theoryQuantum chaosSelection of the probability distributionSemiclassical theoriesStatistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. © 2011 by the authors; licensee MDPI, Basel, Switzerland.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_10994300_v13_n6_p1055_KowalskiEntropy 2011;13(6):1055-1075reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_10994300_v13_n6_p1055_KowalskiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.319Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Distances in probability space and the statistical complexity setup |
title |
Distances in probability space and the statistical complexity setup |
spellingShingle |
Distances in probability space and the statistical complexity setup Kowalski, A.M. Disequilibrium Generalized statistical complexity Information theory Quantum chaos Selection of the probability distribution Semiclassical theories |
title_short |
Distances in probability space and the statistical complexity setup |
title_full |
Distances in probability space and the statistical complexity setup |
title_fullStr |
Distances in probability space and the statistical complexity setup |
title_full_unstemmed |
Distances in probability space and the statistical complexity setup |
title_sort |
Distances in probability space and the statistical complexity setup |
dc.creator.none.fl_str_mv |
Kowalski, A.M. Martín, M.T. Plastino, A. Rosso, O.A. Casas, M. |
author |
Kowalski, A.M. |
author_facet |
Kowalski, A.M. Martín, M.T. Plastino, A. Rosso, O.A. Casas, M. |
author_role |
author |
author2 |
Martín, M.T. Plastino, A. Rosso, O.A. Casas, M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Disequilibrium Generalized statistical complexity Information theory Quantum chaos Selection of the probability distribution Semiclassical theories |
topic |
Disequilibrium Generalized statistical complexity Information theory Quantum chaos Selection of the probability distribution Semiclassical theories |
dc.description.none.fl_txt_mv |
Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. © 2011 by the authors; licensee MDPI, Basel, Switzerland. |
description |
Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. © 2011 by the authors; licensee MDPI, Basel, Switzerland. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_10994300_v13_n6_p1055_Kowalski |
url |
http://hdl.handle.net/20.500.12110/paper_10994300_v13_n6_p1055_Kowalski |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Entropy 2011;13(6):1055-1075 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739465584640 |
score |
13.070432 |