Distances in probability space and the statistical complexity setup

Autores
Kowalski, Andrés Mauricio; Martín, María Teresa; Plastino, Ángelo; Rosso, Osvaldo A.; Casas, Montserrat
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics.
Materia
Ciencias Físicas
Teoría de la Información
Probabilidad
disequilibrium
generalized statistical complexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/2142

id CICBA_13a7eb4802f0933b5ecf9432477db5d1
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/2142
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Distances in probability space and the statistical complexity setupKowalski, Andrés MauricioMartín, María TeresaPlastino, ÁngeloRosso, Osvaldo A.Casas, MontserratCiencias FísicasTeoría de la InformaciónProbabilidaddisequilibriumgeneralized statistical complexityStatistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics.2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/2142enginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e13061055info:eu-repo/semantics/altIdentifier/issn/1099-4300info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:57Zoai:digital.cic.gba.gob.ar:11746/2142Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:58.051CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Distances in probability space and the statistical complexity setup
title Distances in probability space and the statistical complexity setup
spellingShingle Distances in probability space and the statistical complexity setup
Kowalski, Andrés Mauricio
Ciencias Físicas
Teoría de la Información
Probabilidad
disequilibrium
generalized statistical complexity
title_short Distances in probability space and the statistical complexity setup
title_full Distances in probability space and the statistical complexity setup
title_fullStr Distances in probability space and the statistical complexity setup
title_full_unstemmed Distances in probability space and the statistical complexity setup
title_sort Distances in probability space and the statistical complexity setup
dc.creator.none.fl_str_mv Kowalski, Andrés Mauricio
Martín, María Teresa
Plastino, Ángelo
Rosso, Osvaldo A.
Casas, Montserrat
author Kowalski, Andrés Mauricio
author_facet Kowalski, Andrés Mauricio
Martín, María Teresa
Plastino, Ángelo
Rosso, Osvaldo A.
Casas, Montserrat
author_role author
author2 Martín, María Teresa
Plastino, Ángelo
Rosso, Osvaldo A.
Casas, Montserrat
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Físicas
Teoría de la Información
Probabilidad
disequilibrium
generalized statistical complexity
topic Ciencias Físicas
Teoría de la Información
Probabilidad
disequilibrium
generalized statistical complexity
dc.description.none.fl_txt_mv Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics.
description Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics.
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/2142
url https://digital.cic.gba.gob.ar/handle/11746/2142
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/e13061055
info:eu-repo/semantics/altIdentifier/issn/1099-4300
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618589440573440
score 13.070432