Distances in probability space and the statistical complexity setup
- Autores
- Kowalski, Andrés Mauricio; Martín, María Teresa; Plastino, Ángelo; Rosso, Osvaldo A.; Casas, Montserrat
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics.
- Materia
-
Ciencias Físicas
Teoría de la Información
Probabilidad
disequilibrium
generalized statistical complexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/2142
Ver los metadatos del registro completo
id |
CICBA_13a7eb4802f0933b5ecf9432477db5d1 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/2142 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Distances in probability space and the statistical complexity setupKowalski, Andrés MauricioMartín, María TeresaPlastino, ÁngeloRosso, Osvaldo A.Casas, MontserratCiencias FísicasTeoría de la InformaciónProbabilidaddisequilibriumgeneralized statistical complexityStatistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics.2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/2142enginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e13061055info:eu-repo/semantics/altIdentifier/issn/1099-4300info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:39:57Zoai:digital.cic.gba.gob.ar:11746/2142Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:39:58.051CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Distances in probability space and the statistical complexity setup |
title |
Distances in probability space and the statistical complexity setup |
spellingShingle |
Distances in probability space and the statistical complexity setup Kowalski, Andrés Mauricio Ciencias Físicas Teoría de la Información Probabilidad disequilibrium generalized statistical complexity |
title_short |
Distances in probability space and the statistical complexity setup |
title_full |
Distances in probability space and the statistical complexity setup |
title_fullStr |
Distances in probability space and the statistical complexity setup |
title_full_unstemmed |
Distances in probability space and the statistical complexity setup |
title_sort |
Distances in probability space and the statistical complexity setup |
dc.creator.none.fl_str_mv |
Kowalski, Andrés Mauricio Martín, María Teresa Plastino, Ángelo Rosso, Osvaldo A. Casas, Montserrat |
author |
Kowalski, Andrés Mauricio |
author_facet |
Kowalski, Andrés Mauricio Martín, María Teresa Plastino, Ángelo Rosso, Osvaldo A. Casas, Montserrat |
author_role |
author |
author2 |
Martín, María Teresa Plastino, Ángelo Rosso, Osvaldo A. Casas, Montserrat |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Físicas Teoría de la Información Probabilidad disequilibrium generalized statistical complexity |
topic |
Ciencias Físicas Teoría de la Información Probabilidad disequilibrium generalized statistical complexity |
dc.description.none.fl_txt_mv |
Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. |
description |
Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/2142 |
url |
https://digital.cic.gba.gob.ar/handle/11746/2142 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/e13061055 info:eu-repo/semantics/altIdentifier/issn/1099-4300 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618589440573440 |
score |
13.070432 |