Computing ideal classes representatives in quaternion algebras
- Autores
- Pacetti, Ariel Martín; Sirolli, Nicolás Martín
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let K be a totally real number field and let B be a totally definite quaternion algebra over K. Given a set of representatives for ideal classes for a maximal order in B, we show how to construct in an efficient way a set of representatives of ideal classes for any Bass order in B. The algorithm does not require any knowledge of class numbers, and improves the equivalence checking process by using a simple calculation with global units. As an application, we compute ideal classes representatives for an order of discriminant 30 in an algebra over the real quadratic field Q ([√ 5].
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sirolli, Nicolás Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
IDEAL
CLASSES
QUATERNION
ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85175
Ver los metadatos del registro completo
id |
CONICETDig_f6dad76717b85fc569b885f9c0c703c0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85175 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Computing ideal classes representatives in quaternion algebrasPacetti, Ariel MartínSirolli, Nicolás MartínIDEALCLASSESQUATERNIONALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let K be a totally real number field and let B be a totally definite quaternion algebra over K. Given a set of representatives for ideal classes for a maximal order in B, we show how to construct in an efficient way a set of representatives of ideal classes for any Bass order in B. The algorithm does not require any knowledge of class numbers, and improves the equivalence checking process by using a simple calculation with global units. As an application, we compute ideal classes representatives for an order of discriminant 30 in an algebra over the real quadratic field Q ([√ 5].Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sirolli, Nicolás Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85175Pacetti, Ariel Martín; Sirolli, Nicolás Martín; Computing ideal classes representatives in quaternion algebras; American Mathematical Society; Mathematics of Computation; 83; 289; 6-2014; 2479-25070025-5718CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2014-02796-8info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2014-02796-8/info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.2821info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:00Zoai:ri.conicet.gov.ar:11336/85175instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:01.263CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Computing ideal classes representatives in quaternion algebras |
title |
Computing ideal classes representatives in quaternion algebras |
spellingShingle |
Computing ideal classes representatives in quaternion algebras Pacetti, Ariel Martín IDEAL CLASSES QUATERNION ALGEBRAS |
title_short |
Computing ideal classes representatives in quaternion algebras |
title_full |
Computing ideal classes representatives in quaternion algebras |
title_fullStr |
Computing ideal classes representatives in quaternion algebras |
title_full_unstemmed |
Computing ideal classes representatives in quaternion algebras |
title_sort |
Computing ideal classes representatives in quaternion algebras |
dc.creator.none.fl_str_mv |
Pacetti, Ariel Martín Sirolli, Nicolás Martín |
author |
Pacetti, Ariel Martín |
author_facet |
Pacetti, Ariel Martín Sirolli, Nicolás Martín |
author_role |
author |
author2 |
Sirolli, Nicolás Martín |
author2_role |
author |
dc.subject.none.fl_str_mv |
IDEAL CLASSES QUATERNION ALGEBRAS |
topic |
IDEAL CLASSES QUATERNION ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let K be a totally real number field and let B be a totally definite quaternion algebra over K. Given a set of representatives for ideal classes for a maximal order in B, we show how to construct in an efficient way a set of representatives of ideal classes for any Bass order in B. The algorithm does not require any knowledge of class numbers, and improves the equivalence checking process by using a simple calculation with global units. As an application, we compute ideal classes representatives for an order of discriminant 30 in an algebra over the real quadratic field Q ([√ 5]. Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sirolli, Nicolás Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Let K be a totally real number field and let B be a totally definite quaternion algebra over K. Given a set of representatives for ideal classes for a maximal order in B, we show how to construct in an efficient way a set of representatives of ideal classes for any Bass order in B. The algorithm does not require any knowledge of class numbers, and improves the equivalence checking process by using a simple calculation with global units. As an application, we compute ideal classes representatives for an order of discriminant 30 in an algebra over the real quadratic field Q ([√ 5]. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85175 Pacetti, Ariel Martín; Sirolli, Nicolás Martín; Computing ideal classes representatives in quaternion algebras; American Mathematical Society; Mathematics of Computation; 83; 289; 6-2014; 2479-2507 0025-5718 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85175 |
identifier_str_mv |
Pacetti, Ariel Martín; Sirolli, Nicolás Martín; Computing ideal classes representatives in quaternion algebras; American Mathematical Society; Mathematics of Computation; 83; 289; 6-2014; 2479-2507 0025-5718 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2014-02796-8 info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2014-83-289/S0025-5718-2014-02796-8/ info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1007.2821 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614476744097792 |
score |
13.070432 |