Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups

Autores
Andruskiewitsch, Nicolas; Carnovale, Giovanna; García, Gastón Andrés
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that Nichols algebras of most simple Yetter-Drinfeld modules over the projective symplectic linear group over a finite field, corresponding to unipotent orbits, have infinite dimension. We give a criterion to deal with unipotent classes of general finite simple groups of Lie type and apply it to regular classes in Chevalley and Steinberg groups.
Fil: Andruskiewitsch, Nicolas. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carnovale, Giovanna. Università di Padova; Italia
Fil: García, Gastón Andrés. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Conjugacy Class
Finite Group of Lie Type
Hopf Algebra
Nichols Algebra
Rack
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/54877

id CONICETDig_445f5c4f71fd9ce96ba49eabb21f1fe4
oai_identifier_str oai:ri.conicet.gov.ar:11336/54877
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groupsAndruskiewitsch, NicolasCarnovale, GiovannaGarcía, Gastón AndrésConjugacy ClassFinite Group of Lie TypeHopf AlgebraNichols AlgebraRackhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that Nichols algebras of most simple Yetter-Drinfeld modules over the projective symplectic linear group over a finite field, corresponding to unipotent orbits, have infinite dimension. We give a criterion to deal with unipotent classes of general finite simple groups of Lie type and apply it to regular classes in Chevalley and Steinberg groups.Fil: Andruskiewitsch, Nicolas. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carnovale, Giovanna. Università di Padova; ItaliaFil: García, Gastón Andrés. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWorld Scientific2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54877Andruskiewitsch, Nicolas; Carnovale, Giovanna; García, Gastón Andrés; Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups; World Scientific; Communications In Contemporary Mathematics; 18; 4; 8-20160219-1997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199715500534info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219199715500534info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:18:16Zoai:ri.conicet.gov.ar:11336/54877instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:18:17.217CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups
title Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups
spellingShingle Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups
Andruskiewitsch, Nicolas
Conjugacy Class
Finite Group of Lie Type
Hopf Algebra
Nichols Algebra
Rack
title_short Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups
title_full Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups
title_fullStr Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups
title_full_unstemmed Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups
title_sort Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups
dc.creator.none.fl_str_mv Andruskiewitsch, Nicolas
Carnovale, Giovanna
García, Gastón Andrés
author Andruskiewitsch, Nicolas
author_facet Andruskiewitsch, Nicolas
Carnovale, Giovanna
García, Gastón Andrés
author_role author
author2 Carnovale, Giovanna
García, Gastón Andrés
author2_role author
author
dc.subject.none.fl_str_mv Conjugacy Class
Finite Group of Lie Type
Hopf Algebra
Nichols Algebra
Rack
topic Conjugacy Class
Finite Group of Lie Type
Hopf Algebra
Nichols Algebra
Rack
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that Nichols algebras of most simple Yetter-Drinfeld modules over the projective symplectic linear group over a finite field, corresponding to unipotent orbits, have infinite dimension. We give a criterion to deal with unipotent classes of general finite simple groups of Lie type and apply it to regular classes in Chevalley and Steinberg groups.
Fil: Andruskiewitsch, Nicolas. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carnovale, Giovanna. Università di Padova; Italia
Fil: García, Gastón Andrés. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We show that Nichols algebras of most simple Yetter-Drinfeld modules over the projective symplectic linear group over a finite field, corresponding to unipotent orbits, have infinite dimension. We give a criterion to deal with unipotent classes of general finite simple groups of Lie type and apply it to regular classes in Chevalley and Steinberg groups.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/54877
Andruskiewitsch, Nicolas; Carnovale, Giovanna; García, Gastón Andrés; Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups; World Scientific; Communications In Contemporary Mathematics; 18; 4; 8-2016
0219-1997
CONICET Digital
CONICET
url http://hdl.handle.net/11336/54877
identifier_str_mv Andruskiewitsch, Nicolas; Carnovale, Giovanna; García, Gastón Andrés; Finite-dimensional pointed Hopf algebras over finite simple groups of Lie type II: Unipotent classes in symplectic groups; World Scientific; Communications In Contemporary Mathematics; 18; 4; 8-2016
0219-1997
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199715500534
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S0219199715500534
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781643829805056
score 12.982451