Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction
- Autores
- Cruces, Pablo Daniel; Correa Prado, Raul Oscar; Laciar Leber, Eric; Arini, Pedro David
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Quaternion neural networks have been shownto be useful in image and signal processing applications.Herein, we propose a novel architecture of a neural unit model characterized by its ability of encoding 3-dimensional past information and that facilitates the learning of velocity patterns. We evaluate the implementation of the networkin a study of the cardiac vector velocity and its usefulness in early detection of patients with anterior myocardial infarction. Experimental results show an improvement of the performance in terms of convergence speed and precision when comparing with traditional methods. Furthermore, the network shows successful results in measuring the velocity reduction that is usually observed in vectorcardiogram signals in the presence of myocardial damage. Through a linear discriminant analysis, a pair of 100% / 98% of sensitivity/specificity is met with only two velocity parameters. We conclude that this method is a very promising developmentfor future computational tools devoted to early diagnosis ofheart diseases.
Fil: Cruces, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Correa Prado, Raul Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
XXI Congreso Argentino de Bioingeniería
Córdoba
Argentina
Sociedad Argentina de Bioingeniería
Universidad Nacional de Córdoba - Materia
-
Myocardial infarction
Quaternion Algebra
Neural Networks
Cardiac vector velocity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/174568
Ver los metadatos del registro completo
id |
CONICETDig_b9d0edfe90fbd94cffa0fdf6d320183e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/174568 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial InfarctionCruces, Pablo DanielCorrea Prado, Raul OscarLaciar Leber, EricArini, Pedro DavidMyocardial infarctionQuaternion AlgebraNeural NetworksCardiac vector velocityhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Quaternion neural networks have been shownto be useful in image and signal processing applications.Herein, we propose a novel architecture of a neural unit model characterized by its ability of encoding 3-dimensional past information and that facilitates the learning of velocity patterns. We evaluate the implementation of the networkin a study of the cardiac vector velocity and its usefulness in early detection of patients with anterior myocardial infarction. Experimental results show an improvement of the performance in terms of convergence speed and precision when comparing with traditional methods. Furthermore, the network shows successful results in measuring the velocity reduction that is usually observed in vectorcardiogram signals in the presence of myocardial damage. Through a linear discriminant analysis, a pair of 100% / 98% of sensitivity/specificity is met with only two velocity parameters. We conclude that this method is a very promising developmentfor future computational tools devoted to early diagnosis ofheart diseases.Fil: Cruces, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Correa Prado, Raul Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaXXI Congreso Argentino de BioingenieríaCórdobaArgentinaSociedad Argentina de BioingenieríaUniversidad Nacional de CórdobaSociedad Argentina de Bioingeniería2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174568Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction; XXI Congreso Argentino de Bioingeniería; Córdoba; Argentina; 2017; 1-5CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://revista.sabi.org.ar/index.php/revista/article/view/167Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:59Zoai:ri.conicet.gov.ar:11336/174568instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:59.521CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction |
title |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction |
spellingShingle |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction Cruces, Pablo Daniel Myocardial infarction Quaternion Algebra Neural Networks Cardiac vector velocity |
title_short |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction |
title_full |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction |
title_fullStr |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction |
title_full_unstemmed |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction |
title_sort |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction |
dc.creator.none.fl_str_mv |
Cruces, Pablo Daniel Correa Prado, Raul Oscar Laciar Leber, Eric Arini, Pedro David |
author |
Cruces, Pablo Daniel |
author_facet |
Cruces, Pablo Daniel Correa Prado, Raul Oscar Laciar Leber, Eric Arini, Pedro David |
author_role |
author |
author2 |
Correa Prado, Raul Oscar Laciar Leber, Eric Arini, Pedro David |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Myocardial infarction Quaternion Algebra Neural Networks Cardiac vector velocity |
topic |
Myocardial infarction Quaternion Algebra Neural Networks Cardiac vector velocity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Quaternion neural networks have been shownto be useful in image and signal processing applications.Herein, we propose a novel architecture of a neural unit model characterized by its ability of encoding 3-dimensional past information and that facilitates the learning of velocity patterns. We evaluate the implementation of the networkin a study of the cardiac vector velocity and its usefulness in early detection of patients with anterior myocardial infarction. Experimental results show an improvement of the performance in terms of convergence speed and precision when comparing with traditional methods. Furthermore, the network shows successful results in measuring the velocity reduction that is usually observed in vectorcardiogram signals in the presence of myocardial damage. Through a linear discriminant analysis, a pair of 100% / 98% of sensitivity/specificity is met with only two velocity parameters. We conclude that this method is a very promising developmentfor future computational tools devoted to early diagnosis ofheart diseases. Fil: Cruces, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Correa Prado, Raul Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Arini, Pedro David. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina XXI Congreso Argentino de Bioingeniería Córdoba Argentina Sociedad Argentina de Bioingeniería Universidad Nacional de Córdoba |
description |
Quaternion neural networks have been shownto be useful in image and signal processing applications.Herein, we propose a novel architecture of a neural unit model characterized by its ability of encoding 3-dimensional past information and that facilitates the learning of velocity patterns. We evaluate the implementation of the networkin a study of the cardiac vector velocity and its usefulness in early detection of patients with anterior myocardial infarction. Experimental results show an improvement of the performance in terms of convergence speed and precision when comparing with traditional methods. Furthermore, the network shows successful results in measuring the velocity reduction that is usually observed in vectorcardiogram signals in the presence of myocardial damage. Through a linear discriminant analysis, a pair of 100% / 98% of sensitivity/specificity is met with only two velocity parameters. We conclude that this method is a very promising developmentfor future computational tools devoted to early diagnosis ofheart diseases. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/174568 Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction; XXI Congreso Argentino de Bioingeniería; Córdoba; Argentina; 2017; 1-5 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/174568 |
identifier_str_mv |
Quaternion Neural Network with Temporal Feedback Calculation: Application to Cardiac Vector Velocity during Myocardial Infarction; XXI Congreso Argentino de Bioingeniería; Córdoba; Argentina; 2017; 1-5 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://revista.sabi.org.ar/index.php/revista/article/view/167 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Bioingeniería |
publisher.none.fl_str_mv |
Sociedad Argentina de Bioingeniería |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269315753050112 |
score |
13.13397 |