Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis

Autores
Chen, Xuning; Li, Binghua; Jia, Hao; Feng, Fan; Duan, Feng; Sun, Zhe; Caiafa, César Federico; Solé Casals, Jordi
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Gifted children and normal controls can be distinguished by analyzing the structural connectivity (SC) extracted from MRI data. Previous studies have improved classification accuracy by extracting several features of the brain regions. However, the limited size of the database may lead to degradation when training deep neural networks as classification models. To this end, we propose to use a data augmentation method by adding artificial samples generated using graph empirical mode decomposition (GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial samples. After that, we use the original training samples and the new artificial samples to enlarge the training set. To evaluate the proposed method, we use a deep neural network architecture called BrainNetCNN to classify the SCs of MRI data with and without data augmentation. The results show that the data augmentation with GEMD can improve the average classification performance from 55.7 to 78%, while we get a state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our results demonstrate that the proposed GEMD augmentation method can effectively increase the limited number of samples in the gifted children dataset, improving the classification accuracy. We also found that the classification accuracy is improved when specific features extracted from brain regions are used, achieving 93.1% for some feature selection methods.
Fil: Chen, Xuning. Nankai University; China
Fil: Li, Binghua. Nankai University; China
Fil: Jia, Hao. Nankai University; China
Fil: Feng, Fan. Nankai University; China
Fil: Duan, Feng. Nankai University; China
Fil: Sun, Zhe. No especifíca;
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Solé Casals, Jordi. Nankai University; China
Materia
BRAINNETCNN
GEMD
GIFTED CHILDREN
MRI
STRUCTURAL CONNECTIVITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216799

id CONICETDig_f6942dbb4ddb8168d31dad990c58f45a
oai_identifier_str oai:ri.conicet.gov.ar:11336/216799
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI AnalysisChen, XuningLi, BinghuaJia, HaoFeng, FanDuan, FengSun, ZheCaiafa, César FedericoSolé Casals, JordiBRAINNETCNNGEMDGIFTED CHILDRENMRISTRUCTURAL CONNECTIVITYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Gifted children and normal controls can be distinguished by analyzing the structural connectivity (SC) extracted from MRI data. Previous studies have improved classification accuracy by extracting several features of the brain regions. However, the limited size of the database may lead to degradation when training deep neural networks as classification models. To this end, we propose to use a data augmentation method by adding artificial samples generated using graph empirical mode decomposition (GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial samples. After that, we use the original training samples and the new artificial samples to enlarge the training set. To evaluate the proposed method, we use a deep neural network architecture called BrainNetCNN to classify the SCs of MRI data with and without data augmentation. The results show that the data augmentation with GEMD can improve the average classification performance from 55.7 to 78%, while we get a state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our results demonstrate that the proposed GEMD augmentation method can effectively increase the limited number of samples in the gifted children dataset, improving the classification accuracy. We also found that the classification accuracy is improved when specific features extracted from brain regions are used, achieving 93.1% for some feature selection methods.Fil: Chen, Xuning. Nankai University; ChinaFil: Li, Binghua. Nankai University; ChinaFil: Jia, Hao. Nankai University; ChinaFil: Feng, Fan. Nankai University; ChinaFil: Duan, Feng. Nankai University; ChinaFil: Sun, Zhe. No especifíca;Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Solé Casals, Jordi. Nankai University; ChinaFrontiers Media2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216799Chen, Xuning; Li, Binghua; Jia, Hao; Feng, Fan; Duan, Feng; et al.; Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis; Frontiers Media; Frontiers in Neuroscience; 16; 7-2022; 1-121662-453XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnins.2022.866735info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:53Zoai:ri.conicet.gov.ar:11336/216799instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:53.928CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
title Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
spellingShingle Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
Chen, Xuning
BRAINNETCNN
GEMD
GIFTED CHILDREN
MRI
STRUCTURAL CONNECTIVITY
title_short Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
title_full Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
title_fullStr Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
title_full_unstemmed Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
title_sort Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
dc.creator.none.fl_str_mv Chen, Xuning
Li, Binghua
Jia, Hao
Feng, Fan
Duan, Feng
Sun, Zhe
Caiafa, César Federico
Solé Casals, Jordi
author Chen, Xuning
author_facet Chen, Xuning
Li, Binghua
Jia, Hao
Feng, Fan
Duan, Feng
Sun, Zhe
Caiafa, César Federico
Solé Casals, Jordi
author_role author
author2 Li, Binghua
Jia, Hao
Feng, Fan
Duan, Feng
Sun, Zhe
Caiafa, César Federico
Solé Casals, Jordi
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv BRAINNETCNN
GEMD
GIFTED CHILDREN
MRI
STRUCTURAL CONNECTIVITY
topic BRAINNETCNN
GEMD
GIFTED CHILDREN
MRI
STRUCTURAL CONNECTIVITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Gifted children and normal controls can be distinguished by analyzing the structural connectivity (SC) extracted from MRI data. Previous studies have improved classification accuracy by extracting several features of the brain regions. However, the limited size of the database may lead to degradation when training deep neural networks as classification models. To this end, we propose to use a data augmentation method by adding artificial samples generated using graph empirical mode decomposition (GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial samples. After that, we use the original training samples and the new artificial samples to enlarge the training set. To evaluate the proposed method, we use a deep neural network architecture called BrainNetCNN to classify the SCs of MRI data with and without data augmentation. The results show that the data augmentation with GEMD can improve the average classification performance from 55.7 to 78%, while we get a state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our results demonstrate that the proposed GEMD augmentation method can effectively increase the limited number of samples in the gifted children dataset, improving the classification accuracy. We also found that the classification accuracy is improved when specific features extracted from brain regions are used, achieving 93.1% for some feature selection methods.
Fil: Chen, Xuning. Nankai University; China
Fil: Li, Binghua. Nankai University; China
Fil: Jia, Hao. Nankai University; China
Fil: Feng, Fan. Nankai University; China
Fil: Duan, Feng. Nankai University; China
Fil: Sun, Zhe. No especifíca;
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Solé Casals, Jordi. Nankai University; China
description Gifted children and normal controls can be distinguished by analyzing the structural connectivity (SC) extracted from MRI data. Previous studies have improved classification accuracy by extracting several features of the brain regions. However, the limited size of the database may lead to degradation when training deep neural networks as classification models. To this end, we propose to use a data augmentation method by adding artificial samples generated using graph empirical mode decomposition (GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial samples. After that, we use the original training samples and the new artificial samples to enlarge the training set. To evaluate the proposed method, we use a deep neural network architecture called BrainNetCNN to classify the SCs of MRI data with and without data augmentation. The results show that the data augmentation with GEMD can improve the average classification performance from 55.7 to 78%, while we get a state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our results demonstrate that the proposed GEMD augmentation method can effectively increase the limited number of samples in the gifted children dataset, improving the classification accuracy. We also found that the classification accuracy is improved when specific features extracted from brain regions are used, achieving 93.1% for some feature selection methods.
publishDate 2022
dc.date.none.fl_str_mv 2022-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216799
Chen, Xuning; Li, Binghua; Jia, Hao; Feng, Fan; Duan, Feng; et al.; Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis; Frontiers Media; Frontiers in Neuroscience; 16; 7-2022; 1-12
1662-453X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216799
identifier_str_mv Chen, Xuning; Li, Binghua; Jia, Hao; Feng, Fan; Duan, Feng; et al.; Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis; Frontiers Media; Frontiers in Neuroscience; 16; 7-2022; 1-12
1662-453X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3389/fnins.2022.866735
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614462348197888
score 13.070432