Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis
- Autores
- Chen, Xuning; Li, Binghua; Jia, Hao; Feng, Fan; Duan, Feng; Sun, Zhe; Caiafa, César Federico; Solé Casals, Jordi
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gifted children and normal controls can be distinguished by analyzing the structural connectivity (SC) extracted from MRI data. Previous studies have improved classification accuracy by extracting several features of the brain regions. However, the limited size of the database may lead to degradation when training deep neural networks as classification models. To this end, we propose to use a data augmentation method by adding artificial samples generated using graph empirical mode decomposition (GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial samples. After that, we use the original training samples and the new artificial samples to enlarge the training set. To evaluate the proposed method, we use a deep neural network architecture called BrainNetCNN to classify the SCs of MRI data with and without data augmentation. The results show that the data augmentation with GEMD can improve the average classification performance from 55.7 to 78%, while we get a state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our results demonstrate that the proposed GEMD augmentation method can effectively increase the limited number of samples in the gifted children dataset, improving the classification accuracy. We also found that the classification accuracy is improved when specific features extracted from brain regions are used, achieving 93.1% for some feature selection methods.
Fil: Chen, Xuning. Nankai University; China
Fil: Li, Binghua. Nankai University; China
Fil: Jia, Hao. Nankai University; China
Fil: Feng, Fan. Nankai University; China
Fil: Duan, Feng. Nankai University; China
Fil: Sun, Zhe. No especifíca;
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Solé Casals, Jordi. Nankai University; China - Materia
-
BRAINNETCNN
GEMD
GIFTED CHILDREN
MRI
STRUCTURAL CONNECTIVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216799
Ver los metadatos del registro completo
id |
CONICETDig_f6942dbb4ddb8168d31dad990c58f45a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216799 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI AnalysisChen, XuningLi, BinghuaJia, HaoFeng, FanDuan, FengSun, ZheCaiafa, César FedericoSolé Casals, JordiBRAINNETCNNGEMDGIFTED CHILDRENMRISTRUCTURAL CONNECTIVITYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Gifted children and normal controls can be distinguished by analyzing the structural connectivity (SC) extracted from MRI data. Previous studies have improved classification accuracy by extracting several features of the brain regions. However, the limited size of the database may lead to degradation when training deep neural networks as classification models. To this end, we propose to use a data augmentation method by adding artificial samples generated using graph empirical mode decomposition (GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial samples. After that, we use the original training samples and the new artificial samples to enlarge the training set. To evaluate the proposed method, we use a deep neural network architecture called BrainNetCNN to classify the SCs of MRI data with and without data augmentation. The results show that the data augmentation with GEMD can improve the average classification performance from 55.7 to 78%, while we get a state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our results demonstrate that the proposed GEMD augmentation method can effectively increase the limited number of samples in the gifted children dataset, improving the classification accuracy. We also found that the classification accuracy is improved when specific features extracted from brain regions are used, achieving 93.1% for some feature selection methods.Fil: Chen, Xuning. Nankai University; ChinaFil: Li, Binghua. Nankai University; ChinaFil: Jia, Hao. Nankai University; ChinaFil: Feng, Fan. Nankai University; ChinaFil: Duan, Feng. Nankai University; ChinaFil: Sun, Zhe. No especifíca;Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Solé Casals, Jordi. Nankai University; ChinaFrontiers Media2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216799Chen, Xuning; Li, Binghua; Jia, Hao; Feng, Fan; Duan, Feng; et al.; Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis; Frontiers Media; Frontiers in Neuroscience; 16; 7-2022; 1-121662-453XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnins.2022.866735info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:53Zoai:ri.conicet.gov.ar:11336/216799instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:53.928CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis |
title |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis |
spellingShingle |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis Chen, Xuning BRAINNETCNN GEMD GIFTED CHILDREN MRI STRUCTURAL CONNECTIVITY |
title_short |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis |
title_full |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis |
title_fullStr |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis |
title_full_unstemmed |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis |
title_sort |
Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis |
dc.creator.none.fl_str_mv |
Chen, Xuning Li, Binghua Jia, Hao Feng, Fan Duan, Feng Sun, Zhe Caiafa, César Federico Solé Casals, Jordi |
author |
Chen, Xuning |
author_facet |
Chen, Xuning Li, Binghua Jia, Hao Feng, Fan Duan, Feng Sun, Zhe Caiafa, César Federico Solé Casals, Jordi |
author_role |
author |
author2 |
Li, Binghua Jia, Hao Feng, Fan Duan, Feng Sun, Zhe Caiafa, César Federico Solé Casals, Jordi |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
BRAINNETCNN GEMD GIFTED CHILDREN MRI STRUCTURAL CONNECTIVITY |
topic |
BRAINNETCNN GEMD GIFTED CHILDREN MRI STRUCTURAL CONNECTIVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Gifted children and normal controls can be distinguished by analyzing the structural connectivity (SC) extracted from MRI data. Previous studies have improved classification accuracy by extracting several features of the brain regions. However, the limited size of the database may lead to degradation when training deep neural networks as classification models. To this end, we propose to use a data augmentation method by adding artificial samples generated using graph empirical mode decomposition (GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial samples. After that, we use the original training samples and the new artificial samples to enlarge the training set. To evaluate the proposed method, we use a deep neural network architecture called BrainNetCNN to classify the SCs of MRI data with and without data augmentation. The results show that the data augmentation with GEMD can improve the average classification performance from 55.7 to 78%, while we get a state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our results demonstrate that the proposed GEMD augmentation method can effectively increase the limited number of samples in the gifted children dataset, improving the classification accuracy. We also found that the classification accuracy is improved when specific features extracted from brain regions are used, achieving 93.1% for some feature selection methods. Fil: Chen, Xuning. Nankai University; China Fil: Li, Binghua. Nankai University; China Fil: Jia, Hao. Nankai University; China Fil: Feng, Fan. Nankai University; China Fil: Duan, Feng. Nankai University; China Fil: Sun, Zhe. No especifíca; Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Solé Casals, Jordi. Nankai University; China |
description |
Gifted children and normal controls can be distinguished by analyzing the structural connectivity (SC) extracted from MRI data. Previous studies have improved classification accuracy by extracting several features of the brain regions. However, the limited size of the database may lead to degradation when training deep neural networks as classification models. To this end, we propose to use a data augmentation method by adding artificial samples generated using graph empirical mode decomposition (GEMD). We decompose the training samples by GEMD to obtain the intrinsic mode functions (IMFs). Then, the IMFs are randomly recombined to generate the new artificial samples. After that, we use the original training samples and the new artificial samples to enlarge the training set. To evaluate the proposed method, we use a deep neural network architecture called BrainNetCNN to classify the SCs of MRI data with and without data augmentation. The results show that the data augmentation with GEMD can improve the average classification performance from 55.7 to 78%, while we get a state-of-the-art classification accuracy of 93.3% by using GEMD in some cases. Our results demonstrate that the proposed GEMD augmentation method can effectively increase the limited number of samples in the gifted children dataset, improving the classification accuracy. We also found that the classification accuracy is improved when specific features extracted from brain regions are used, achieving 93.1% for some feature selection methods. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216799 Chen, Xuning; Li, Binghua; Jia, Hao; Feng, Fan; Duan, Feng; et al.; Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis; Frontiers Media; Frontiers in Neuroscience; 16; 7-2022; 1-12 1662-453X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/216799 |
identifier_str_mv |
Chen, Xuning; Li, Binghua; Jia, Hao; Feng, Fan; Duan, Feng; et al.; Graph Empirical Mode Decomposition-Based Data Augmentation Applied to Gifted Children MRI Analysis; Frontiers Media; Frontiers in Neuroscience; 16; 7-2022; 1-12 1662-453X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3389/fnins.2022.866735 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614462348197888 |
score |
13.070432 |