A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification
- Autores
- Zhang, Jin; Feng, Fan; Han, TianYi; Duan, Feng; Sun, Zhe; Caiafa, César Federico; Solé Casals, Jordi
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gifted children are able to learn in a more advanced way than others, probably due to neurophysiological differences in the communication efficiency in neural pathways. Topological features contribute to understanding the correlation between the brain structure and intelligence. Despite decades of neuroscience research using MRI, methods based on brain region connectivity patterns are limited by MRI artifacts, which therefore leads to revisiting MRI morphometric features, with the aim of using them to directly identify gifted children instead of using brain connectivity. However, the small, high dimensional morphometric feature dataset with outliers makes the task of finding good classification models challenging. To this end, a hybrid method is proposed that combines tensor completion and feature selection methods to handle outliers and then select the discriminative features. The proposed method can achieve a classification accuracy of 93.1%, higher than other existing algorithms, which is thus suitable for the small MRI datasets with outliers in supervised classification scenarios.
Fil: Zhang, Jin. Nankai University; China
Fil: Feng, Fan. Nankai University; China
Fil: Han, TianYi. Nankai University; China
Fil: Duan, Feng. Nankai University; China
Fil: Sun, Zhe. Riken. Brain Science Institute; Japón
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Solé Casals, Jordi. Central University of Catalonia; España - Materia
-
Tensor completion
brain sciences
gifted children - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146028
Ver los metadatos del registro completo
id |
CONICETDig_ecec89f7dc3133ea971153012c1a2590 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146028 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identificationZhang, JinFeng, FanHan, TianYiDuan, FengSun, ZheCaiafa, César FedericoSolé Casals, JordiTensor completionbrain sciencesgifted childrenhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Gifted children are able to learn in a more advanced way than others, probably due to neurophysiological differences in the communication efficiency in neural pathways. Topological features contribute to understanding the correlation between the brain structure and intelligence. Despite decades of neuroscience research using MRI, methods based on brain region connectivity patterns are limited by MRI artifacts, which therefore leads to revisiting MRI morphometric features, with the aim of using them to directly identify gifted children instead of using brain connectivity. However, the small, high dimensional morphometric feature dataset with outliers makes the task of finding good classification models challenging. To this end, a hybrid method is proposed that combines tensor completion and feature selection methods to handle outliers and then select the discriminative features. The proposed method can achieve a classification accuracy of 93.1%, higher than other existing algorithms, which is thus suitable for the small MRI datasets with outliers in supervised classification scenarios.Fil: Zhang, Jin. Nankai University; ChinaFil: Feng, Fan. Nankai University; ChinaFil: Han, TianYi. Nankai University; ChinaFil: Duan, Feng. Nankai University; ChinaFil: Sun, Zhe. Riken. Brain Science Institute; JapónFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Solé Casals, Jordi. Central University of Catalonia; EspañaSpringer2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146028Zhang, Jin; Feng, Fan; Han, TianYi; Duan, Feng; Sun, Zhe; et al.; A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification; Springer; Science China Technological Sciences; 64; 8-2021; 1863–18711674-73211869-1900CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11431-020-1876-3info:eu-repo/semantics/altIdentifier/doi/10.1007/s11431-020-1876-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:01Zoai:ri.conicet.gov.ar:11336/146028instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:01.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification |
title |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification |
spellingShingle |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification Zhang, Jin Tensor completion brain sciences gifted children |
title_short |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification |
title_full |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification |
title_fullStr |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification |
title_full_unstemmed |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification |
title_sort |
A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification |
dc.creator.none.fl_str_mv |
Zhang, Jin Feng, Fan Han, TianYi Duan, Feng Sun, Zhe Caiafa, César Federico Solé Casals, Jordi |
author |
Zhang, Jin |
author_facet |
Zhang, Jin Feng, Fan Han, TianYi Duan, Feng Sun, Zhe Caiafa, César Federico Solé Casals, Jordi |
author_role |
author |
author2 |
Feng, Fan Han, TianYi Duan, Feng Sun, Zhe Caiafa, César Federico Solé Casals, Jordi |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Tensor completion brain sciences gifted children |
topic |
Tensor completion brain sciences gifted children |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Gifted children are able to learn in a more advanced way than others, probably due to neurophysiological differences in the communication efficiency in neural pathways. Topological features contribute to understanding the correlation between the brain structure and intelligence. Despite decades of neuroscience research using MRI, methods based on brain region connectivity patterns are limited by MRI artifacts, which therefore leads to revisiting MRI morphometric features, with the aim of using them to directly identify gifted children instead of using brain connectivity. However, the small, high dimensional morphometric feature dataset with outliers makes the task of finding good classification models challenging. To this end, a hybrid method is proposed that combines tensor completion and feature selection methods to handle outliers and then select the discriminative features. The proposed method can achieve a classification accuracy of 93.1%, higher than other existing algorithms, which is thus suitable for the small MRI datasets with outliers in supervised classification scenarios. Fil: Zhang, Jin. Nankai University; China Fil: Feng, Fan. Nankai University; China Fil: Han, TianYi. Nankai University; China Fil: Duan, Feng. Nankai University; China Fil: Sun, Zhe. Riken. Brain Science Institute; Japón Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Solé Casals, Jordi. Central University of Catalonia; España |
description |
Gifted children are able to learn in a more advanced way than others, probably due to neurophysiological differences in the communication efficiency in neural pathways. Topological features contribute to understanding the correlation between the brain structure and intelligence. Despite decades of neuroscience research using MRI, methods based on brain region connectivity patterns are limited by MRI artifacts, which therefore leads to revisiting MRI morphometric features, with the aim of using them to directly identify gifted children instead of using brain connectivity. However, the small, high dimensional morphometric feature dataset with outliers makes the task of finding good classification models challenging. To this end, a hybrid method is proposed that combines tensor completion and feature selection methods to handle outliers and then select the discriminative features. The proposed method can achieve a classification accuracy of 93.1%, higher than other existing algorithms, which is thus suitable for the small MRI datasets with outliers in supervised classification scenarios. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146028 Zhang, Jin; Feng, Fan; Han, TianYi; Duan, Feng; Sun, Zhe; et al.; A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification; Springer; Science China Technological Sciences; 64; 8-2021; 1863–1871 1674-7321 1869-1900 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146028 |
identifier_str_mv |
Zhang, Jin; Feng, Fan; Han, TianYi; Duan, Feng; Sun, Zhe; et al.; A hybrid method to select morphometric features using tensor completion and F-score rank for gifted children identification; Springer; Science China Technological Sciences; 64; 8-2021; 1863–1871 1674-7321 1869-1900 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11431-020-1876-3 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11431-020-1876-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613385410314240 |
score |
13.070432 |