On estimates for the period of solutions of equations involving the φ-Laplace operator

Autores
Acinas, Sonia Ester; Giubergia, Graciela; Mazzone, Fernando Dario; Schwindt, Erica L.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we give new bounds for the period of solutions to certain Hamiltonian system involving a function phi. We also obtain upper and lower bounds which are uniform with respect to the function . Furthermore, the optimality of this lower bound is established.
Fil: Acinas, Sonia Ester. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Giubergia, Graciela. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; Argentina
Fil: Mazzone, Fernando Dario. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schwindt, Erica L.. Université de Lorraine; Francia
Materia
Phi-Laplace
Hamiltonian System
Eigenvalue Problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14638

id CONICETDig_f687b81822490134c20972fe33de80cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/14638
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On estimates for the period of solutions of equations involving the φ-Laplace operatorAcinas, Sonia EsterGiubergia, GracielaMazzone, Fernando DarioSchwindt, Erica L.Phi-LaplaceHamiltonian SystemEigenvalue Problemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we give new bounds for the period of solutions to certain Hamiltonian system involving a function phi. We also obtain upper and lower bounds which are uniform with respect to the function . Furthermore, the optimality of this lower bound is established.Fil: Acinas, Sonia Ester. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Giubergia, Graciela. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; ArgentinaFil: Mazzone, Fernando Dario. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Schwindt, Erica L.. Université de Lorraine; FranciaMathematical Research Publishers2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14638Acinas, Sonia Ester; Giubergia, Graciela; Mazzone, Fernando Dario; Schwindt, Erica L.; On estimates for the period of solutions of equations involving the φ-Laplace operator; Mathematical Research Publishers; Journal of Abstract Differential Equations and Applications; 5; 1; 8-2014; 21-342158-611Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.math-res-pub.org/jadea/5/1/estimates-period-solutions-equations-involving-phi-laplace-operatorinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:51Zoai:ri.conicet.gov.ar:11336/14638instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:51.961CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On estimates for the period of solutions of equations involving the φ-Laplace operator
title On estimates for the period of solutions of equations involving the φ-Laplace operator
spellingShingle On estimates for the period of solutions of equations involving the φ-Laplace operator
Acinas, Sonia Ester
Phi-Laplace
Hamiltonian System
Eigenvalue Problem
title_short On estimates for the period of solutions of equations involving the φ-Laplace operator
title_full On estimates for the period of solutions of equations involving the φ-Laplace operator
title_fullStr On estimates for the period of solutions of equations involving the φ-Laplace operator
title_full_unstemmed On estimates for the period of solutions of equations involving the φ-Laplace operator
title_sort On estimates for the period of solutions of equations involving the φ-Laplace operator
dc.creator.none.fl_str_mv Acinas, Sonia Ester
Giubergia, Graciela
Mazzone, Fernando Dario
Schwindt, Erica L.
author Acinas, Sonia Ester
author_facet Acinas, Sonia Ester
Giubergia, Graciela
Mazzone, Fernando Dario
Schwindt, Erica L.
author_role author
author2 Giubergia, Graciela
Mazzone, Fernando Dario
Schwindt, Erica L.
author2_role author
author
author
dc.subject.none.fl_str_mv Phi-Laplace
Hamiltonian System
Eigenvalue Problem
topic Phi-Laplace
Hamiltonian System
Eigenvalue Problem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we give new bounds for the period of solutions to certain Hamiltonian system involving a function phi. We also obtain upper and lower bounds which are uniform with respect to the function . Furthermore, the optimality of this lower bound is established.
Fil: Acinas, Sonia Ester. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matematica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Giubergia, Graciela. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; Argentina
Fil: Mazzone, Fernando Dario. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Schwindt, Erica L.. Université de Lorraine; Francia
description In this paper we give new bounds for the period of solutions to certain Hamiltonian system involving a function phi. We also obtain upper and lower bounds which are uniform with respect to the function . Furthermore, the optimality of this lower bound is established.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14638
Acinas, Sonia Ester; Giubergia, Graciela; Mazzone, Fernando Dario; Schwindt, Erica L.; On estimates for the period of solutions of equations involving the φ-Laplace operator; Mathematical Research Publishers; Journal of Abstract Differential Equations and Applications; 5; 1; 8-2014; 21-34
2158-611X
url http://hdl.handle.net/11336/14638
identifier_str_mv Acinas, Sonia Ester; Giubergia, Graciela; Mazzone, Fernando Dario; Schwindt, Erica L.; On estimates for the period of solutions of equations involving the φ-Laplace operator; Mathematical Research Publishers; Journal of Abstract Differential Equations and Applications; 5; 1; 8-2014; 21-34
2158-611X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.math-res-pub.org/jadea/5/1/estimates-period-solutions-equations-involving-phi-laplace-operator
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mathematical Research Publishers
publisher.none.fl_str_mv Mathematical Research Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614450625118208
score 13.070432