On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator

Autores
Acinas, Sonia Ester; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we give new bounds for the period of solutions to certain Hamiltonian system involving a function ϕϕ. We also obtain upper and lower bounds which are uniform with respect to the function ϕϕ. Furthermore, the optimality of this lower bound is established.
Fil: Acinas, Sonia Ester. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Schwindt, Erica Leticia. Universite de Lorraine; Francia. Institut Elie Cartan de Lorraine; Francia
Materia
Φϕ-Laplace
Hamiltonian System
Eigenvalue Problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33861

id CONICETDig_390a6cf0d736210f9db0d33e38511dea
oai_identifier_str oai:ri.conicet.gov.ar:11336/33861
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace OperatorAcinas, Sonia EsterGiubergia, Graciela OlgaMazzone, Fernando DarioSchwindt, Erica LeticiaΦϕ-LaplaceHamiltonian SystemEigenvalue Problemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we give new bounds for the period of solutions to certain Hamiltonian system involving a function ϕϕ. We also obtain upper and lower bounds which are uniform with respect to the function ϕϕ. Furthermore, the optimality of this lower bound is established.Fil: Acinas, Sonia Ester. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; ArgentinaFil: Schwindt, Erica Leticia. Universite de Lorraine; Francia. Institut Elie Cartan de Lorraine; FranciaMathematical Research Publishers2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33861Acinas, Sonia Ester; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator; Mathematical Research Publishers; Journal of Abstract Differential Equations and Applications; 5; 1; 3-2014; 21-342158-611XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://math-res-pub.org/jadea/5/1/estimates-period-solutions-equations-involving-phi-laplace-operatorinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:25Zoai:ri.conicet.gov.ar:11336/33861instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:25.733CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator
title On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator
spellingShingle On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator
Acinas, Sonia Ester
Φϕ-Laplace
Hamiltonian System
Eigenvalue Problem
title_short On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator
title_full On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator
title_fullStr On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator
title_full_unstemmed On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator
title_sort On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator
dc.creator.none.fl_str_mv Acinas, Sonia Ester
Giubergia, Graciela Olga
Mazzone, Fernando Dario
Schwindt, Erica Leticia
author Acinas, Sonia Ester
author_facet Acinas, Sonia Ester
Giubergia, Graciela Olga
Mazzone, Fernando Dario
Schwindt, Erica Leticia
author_role author
author2 Giubergia, Graciela Olga
Mazzone, Fernando Dario
Schwindt, Erica Leticia
author2_role author
author
author
dc.subject.none.fl_str_mv Φϕ-Laplace
Hamiltonian System
Eigenvalue Problem
topic Φϕ-Laplace
Hamiltonian System
Eigenvalue Problem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we give new bounds for the period of solutions to certain Hamiltonian system involving a function ϕϕ. We also obtain upper and lower bounds which are uniform with respect to the function ϕϕ. Furthermore, the optimality of this lower bound is established.
Fil: Acinas, Sonia Ester. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Giubergia, Graciela Olga. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina
Fil: Schwindt, Erica Leticia. Universite de Lorraine; Francia. Institut Elie Cartan de Lorraine; Francia
description In this paper we give new bounds for the period of solutions to certain Hamiltonian system involving a function ϕϕ. We also obtain upper and lower bounds which are uniform with respect to the function ϕϕ. Furthermore, the optimality of this lower bound is established.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33861
Acinas, Sonia Ester; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator; Mathematical Research Publishers; Journal of Abstract Differential Equations and Applications; 5; 1; 3-2014; 21-34
2158-611X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33861
identifier_str_mv Acinas, Sonia Ester; Giubergia, Graciela Olga; Mazzone, Fernando Dario; Schwindt, Erica Leticia; On Estimates for the Period of Solutions of Equations Involving the ϕ-Laplace Operator; Mathematical Research Publishers; Journal of Abstract Differential Equations and Applications; 5; 1; 3-2014; 21-34
2158-611X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://math-res-pub.org/jadea/5/1/estimates-period-solutions-equations-involving-phi-laplace-operator
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mathematical Research Publishers
publisher.none.fl_str_mv Mathematical Research Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614145984430080
score 13.070432