The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
- Autores
- Alexander, Pedro Manfredo; de la Torre, Alejandro; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Marcos, Tomas; Kaifler, Bernd; Kaifler, Natalie; Geldenhuys, Markus; Preusse, Peter; Giez, Andreas; Rapp, Markus; Hormaechea, José Luis
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere.
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: de la Torre, Alejandro. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Llamedo Soria, Pablo Martin. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hierro, Rodrigo Federico. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marcos, Tomas. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kaifler, Bernd. German Aerospace Center.; Alemania
Fil: Kaifler, Natalie. German Aerospace Center.; Alemania
Fil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Giez, Andreas. German Aerospace Center.; Alemania
Fil: Rapp, Markus. German Aerospace Center.; Alemania
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina - Materia
-
GRAVITY WAVES
SOUTHTRAC
WRF - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224871
Ver los metadatos del registro completo
id |
CONICETDig_f63169d5c818688ed0fe2bddc80c2574 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224871 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC FlightAlexander, Pedro Manfredode la Torre, AlejandroLlamedo Soria, Pablo MartinHierro, Rodrigo FedericoMarcos, TomasKaifler, BerndKaifler, NatalieGeldenhuys, MarkusPreusse, PeterGiez, AndreasRapp, MarkusHormaechea, José LuisGRAVITY WAVESSOUTHTRACWRFhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere.Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: de la Torre, Alejandro. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Llamedo Soria, Pablo Martin. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hierro, Rodrigo Federico. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcos, Tomas. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kaifler, Bernd. German Aerospace Center.; AlemaniaFil: Kaifler, Natalie. German Aerospace Center.; AlemaniaFil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Giez, Andreas. German Aerospace Center.; AlemaniaFil: Rapp, Markus. German Aerospace Center.; AlemaniaFil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaJohn Wiley & Sons2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224871Alexander, Pedro Manfredo; de la Torre, Alejandro; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Marcos, Tomas; et al.; The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 5; 2-2023; 1-322169-897X2169-8996CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2022JD037276info:eu-repo/semantics/altIdentifier/doi/10.1029/2022JD037276info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:12Zoai:ri.conicet.gov.ar:11336/224871instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:12.688CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight |
title |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight |
spellingShingle |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight Alexander, Pedro Manfredo GRAVITY WAVES SOUTHTRAC WRF |
title_short |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight |
title_full |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight |
title_fullStr |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight |
title_full_unstemmed |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight |
title_sort |
The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight |
dc.creator.none.fl_str_mv |
Alexander, Pedro Manfredo de la Torre, Alejandro Llamedo Soria, Pablo Martin Hierro, Rodrigo Federico Marcos, Tomas Kaifler, Bernd Kaifler, Natalie Geldenhuys, Markus Preusse, Peter Giez, Andreas Rapp, Markus Hormaechea, José Luis |
author |
Alexander, Pedro Manfredo |
author_facet |
Alexander, Pedro Manfredo de la Torre, Alejandro Llamedo Soria, Pablo Martin Hierro, Rodrigo Federico Marcos, Tomas Kaifler, Bernd Kaifler, Natalie Geldenhuys, Markus Preusse, Peter Giez, Andreas Rapp, Markus Hormaechea, José Luis |
author_role |
author |
author2 |
de la Torre, Alejandro Llamedo Soria, Pablo Martin Hierro, Rodrigo Federico Marcos, Tomas Kaifler, Bernd Kaifler, Natalie Geldenhuys, Markus Preusse, Peter Giez, Andreas Rapp, Markus Hormaechea, José Luis |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
GRAVITY WAVES SOUTHTRAC WRF |
topic |
GRAVITY WAVES SOUTHTRAC WRF |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere. Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: de la Torre, Alejandro. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Llamedo Soria, Pablo Martin. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hierro, Rodrigo Federico. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Marcos, Tomas. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kaifler, Bernd. German Aerospace Center.; Alemania Fil: Kaifler, Natalie. German Aerospace Center.; Alemania Fil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania Fil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania Fil: Giez, Andreas. German Aerospace Center.; Alemania Fil: Rapp, Markus. German Aerospace Center.; Alemania Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina |
description |
We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224871 Alexander, Pedro Manfredo; de la Torre, Alejandro; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Marcos, Tomas; et al.; The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 5; 2-2023; 1-32 2169-897X 2169-8996 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/224871 |
identifier_str_mv |
Alexander, Pedro Manfredo; de la Torre, Alejandro; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Marcos, Tomas; et al.; The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 5; 2-2023; 1-32 2169-897X 2169-8996 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2022JD037276 info:eu-repo/semantics/altIdentifier/doi/10.1029/2022JD037276 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614454737633280 |
score |
13.070432 |