The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight

Autores
Alexander, Pedro Manfredo; de la Torre, Alejandro; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Marcos, Tomas; Kaifler, Bernd; Kaifler, Natalie; Geldenhuys, Markus; Preusse, Peter; Giez, Andreas; Rapp, Markus; Hormaechea, José Luis
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere.
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: de la Torre, Alejandro. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Llamedo Soria, Pablo Martin. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hierro, Rodrigo Federico. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marcos, Tomas. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kaifler, Bernd. German Aerospace Center.; Alemania
Fil: Kaifler, Natalie. German Aerospace Center.; Alemania
Fil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Giez, Andreas. German Aerospace Center.; Alemania
Fil: Rapp, Markus. German Aerospace Center.; Alemania
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Materia
GRAVITY WAVES
SOUTHTRAC
WRF
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/224871

id CONICETDig_f63169d5c818688ed0fe2bddc80c2574
oai_identifier_str oai:ri.conicet.gov.ar:11336/224871
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC FlightAlexander, Pedro Manfredode la Torre, AlejandroLlamedo Soria, Pablo MartinHierro, Rodrigo FedericoMarcos, TomasKaifler, BerndKaifler, NatalieGeldenhuys, MarkusPreusse, PeterGiez, AndreasRapp, MarkusHormaechea, José LuisGRAVITY WAVESSOUTHTRACWRFhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere.Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: de la Torre, Alejandro. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Llamedo Soria, Pablo Martin. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hierro, Rodrigo Federico. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcos, Tomas. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kaifler, Bernd. German Aerospace Center.; AlemaniaFil: Kaifler, Natalie. German Aerospace Center.; AlemaniaFil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Giez, Andreas. German Aerospace Center.; AlemaniaFil: Rapp, Markus. German Aerospace Center.; AlemaniaFil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaJohn Wiley & Sons2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224871Alexander, Pedro Manfredo; de la Torre, Alejandro; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Marcos, Tomas; et al.; The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 5; 2-2023; 1-322169-897X2169-8996CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2022JD037276info:eu-repo/semantics/altIdentifier/doi/10.1029/2022JD037276info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:12Zoai:ri.conicet.gov.ar:11336/224871instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:12.688CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
title The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
spellingShingle The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
Alexander, Pedro Manfredo
GRAVITY WAVES
SOUTHTRAC
WRF
title_short The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
title_full The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
title_fullStr The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
title_full_unstemmed The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
title_sort The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight
dc.creator.none.fl_str_mv Alexander, Pedro Manfredo
de la Torre, Alejandro
Llamedo Soria, Pablo Martin
Hierro, Rodrigo Federico
Marcos, Tomas
Kaifler, Bernd
Kaifler, Natalie
Geldenhuys, Markus
Preusse, Peter
Giez, Andreas
Rapp, Markus
Hormaechea, José Luis
author Alexander, Pedro Manfredo
author_facet Alexander, Pedro Manfredo
de la Torre, Alejandro
Llamedo Soria, Pablo Martin
Hierro, Rodrigo Federico
Marcos, Tomas
Kaifler, Bernd
Kaifler, Natalie
Geldenhuys, Markus
Preusse, Peter
Giez, Andreas
Rapp, Markus
Hormaechea, José Luis
author_role author
author2 de la Torre, Alejandro
Llamedo Soria, Pablo Martin
Hierro, Rodrigo Federico
Marcos, Tomas
Kaifler, Bernd
Kaifler, Natalie
Geldenhuys, Markus
Preusse, Peter
Giez, Andreas
Rapp, Markus
Hormaechea, José Luis
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GRAVITY WAVES
SOUTHTRAC
WRF
topic GRAVITY WAVES
SOUTHTRAC
WRF
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere.
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: de la Torre, Alejandro. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Llamedo Soria, Pablo Martin. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hierro, Rodrigo Federico. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marcos, Tomas. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kaifler, Bernd. German Aerospace Center.; Alemania
Fil: Kaifler, Natalie. German Aerospace Center.; Alemania
Fil: Geldenhuys, Markus. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Preusse, Peter. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Giez, Andreas. German Aerospace Center.; Alemania
Fil: Rapp, Markus. German Aerospace Center.; Alemania
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
description We use observations from one of the SOUTHTRAC (Southern Hemisphere Transport, Dynamics, and Chemistry) Campaign flights in Patagonia and the Antarctic Peninsula during September 2019 to analyze possible sources of gravity waves (GW) in this hotspot during austral late winter and early spring. Data from two of the instruments onboard the German High Altitude and Long Range Research Aircraft (HALO) are employed: the Airborne Lidar for Middle Atmosphere research (ALIMA) and the Basic HALO Measurement and Sensor System (BAHAMAS). The former provides vertical temperature profiles along the trajectory, while the latter gives the three components of velocity, pressure, and temperature at the flight position. GW-induced perturbations are obtained from these observations. We include numerical simulations from the Weather Research and Forecast (WRF) model to place a four-dimensional context for the GW observed during the flight and to present possible interpretations of the measurements, for example, the orientation or eventual propagation sense of the waves may not be inferred using only data obtained onboard. We first evaluate agreements and discrepancies between the model outcomes and the observations. This allowed us an assessment of the WRF performance in the generation, propagation, and eventual dissipation of diverse types of GW through the troposphere, stratosphere, and lower mesosphere. We then analyze the coexistence and interplay of mountain waves (MW) and non-orographic (NO) GW. The MW dominate above topographic areas and in the direction of the so-called GW belt, whereas the latter waves are mainly relevant above oceanic zones. WRF simulates NOGW as mainly upward propagating entities above the lower stratosphere. Model runs show that deep vertical propagation conditions are in general favorable during this flight but also that in the upper stratosphere and lower mesosphere and mainly above topography there is some potential for wave breaking. The numerical simulations evaluate the GW drag for the whole flight area and find that the strongest effect is located in the zonal component around the stratopause. The general behavior against height resembles that obtained with a local fixed lidar data. According to WRF results, up to 100 km horizontal wavelength MW account for about half of the force opposing the circulation of the atmosphere.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/224871
Alexander, Pedro Manfredo; de la Torre, Alejandro; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Marcos, Tomas; et al.; The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 5; 2-2023; 1-32
2169-897X
2169-8996
CONICET Digital
CONICET
url http://hdl.handle.net/11336/224871
identifier_str_mv Alexander, Pedro Manfredo; de la Torre, Alejandro; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Marcos, Tomas; et al.; The Coexistence of Gravity Waves From Diverse Sources During a SOUTHTRAC Flight; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 5; 2-2023; 1-32
2169-897X
2169-8996
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2022JD037276
info:eu-repo/semantics/altIdentifier/doi/10.1029/2022JD037276
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons
publisher.none.fl_str_mv John Wiley & Sons
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614454737633280
score 13.070432