A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights
- Autores
- de la Torre, Alejandro; Alexander, Pedro Manfredo; Marcos, Tomas; Hierro, Rodrigo Federico; Llamedo Soria, Pablo Martin; Hormaechea, José Luis; Preusse, P.; Geldenhuys, M.; Krasauskas, L.; Giez, A.; Kaifler, B.; Kaifler, N.; Rapp, M.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- To understand the main orographic and non-orographic sources of gravity waves (GWs) over South America during an Experiment (Rapp et al., 2021, https://doi.org/10.1175/BAMS-D-20-0034.1), we propose the application of a rotational spectral analysis based on methods originally developed for oceanographic studies. This approach is deployed in a complex scenario of large-amplitude GWs by applying it to reanalysis data. We divide the atmospheric region of interest into two height intervals. The simulations are compared with lidar measurements during one of the flights. From the degree of polarization and the total energy of the GWs, the contribution of the upward and downward wave packets is described as a function of their vertical wavenumbers. At low levels, a larger downward energy flux is observed in a few significant harmonics, suggesting inertial GWs radiated at polar night jet levels, and below, near to a cold front. In contrast, the upward GW energy flux, per unit area, is larger than the downward flux, as expected over mountainous areas. The main sub-regions of upward GW energy flux are located above Patagonia, the Antarctic Peninsula and only some oceanic sectors. Above the sea, there are alternating sub-regions dominated by linearly polarized GWs and sectors of downward GWs. At the upper levels, the total available GW energy per unit mass is higher than at the lower levels. Regions with different degrees of polarization are distributed in elongated bands. A satisfactory comparison is made with an analysis based on the phase difference between temperature and vertical wind disturbances.
Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Marcos, Tomas. Universidad Austral; Argentina
Fil: Hierro, Rodrigo Federico. Universidad Austral; Argentina
Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Preusse, P.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Geldenhuys, M.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania. South African Weather Service; Sudáfrica
Fil: Krasauskas, L.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania
Fil: Giez, A.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania
Fil: Kaifler, B.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania
Fil: Kaifler, N.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania
Fil: Rapp, M.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania. Ludwig Maximilians Universitat; Alemania - Materia
-
ANTARCTIC PENINSULA
ENERGY FLUX
GRAVITY WAVES
PATAGONIA
ROTARY SPECTRUM
SOUTHTRAC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219823
Ver los metadatos del registro completo
id |
CONICETDig_aa2bd61ee01f67acce37af131384e70c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219823 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flightsde la Torre, AlejandroAlexander, Pedro ManfredoMarcos, TomasHierro, Rodrigo FedericoLlamedo Soria, Pablo MartinHormaechea, José LuisPreusse, P.Geldenhuys, M.Krasauskas, L.Giez, A.Kaifler, B.Kaifler, N.Rapp, M.ANTARCTIC PENINSULAENERGY FLUXGRAVITY WAVESPATAGONIAROTARY SPECTRUMSOUTHTRAChttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1To understand the main orographic and non-orographic sources of gravity waves (GWs) over South America during an Experiment (Rapp et al., 2021, https://doi.org/10.1175/BAMS-D-20-0034.1), we propose the application of a rotational spectral analysis based on methods originally developed for oceanographic studies. This approach is deployed in a complex scenario of large-amplitude GWs by applying it to reanalysis data. We divide the atmospheric region of interest into two height intervals. The simulations are compared with lidar measurements during one of the flights. From the degree of polarization and the total energy of the GWs, the contribution of the upward and downward wave packets is described as a function of their vertical wavenumbers. At low levels, a larger downward energy flux is observed in a few significant harmonics, suggesting inertial GWs radiated at polar night jet levels, and below, near to a cold front. In contrast, the upward GW energy flux, per unit area, is larger than the downward flux, as expected over mountainous areas. The main sub-regions of upward GW energy flux are located above Patagonia, the Antarctic Peninsula and only some oceanic sectors. Above the sea, there are alternating sub-regions dominated by linearly polarized GWs and sectors of downward GWs. At the upper levels, the total available GW energy per unit mass is higher than at the lower levels. Regions with different degrees of polarization are distributed in elongated bands. A satisfactory comparison is made with an analysis based on the phase difference between temperature and vertical wind disturbances.Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; ArgentinaFil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Marcos, Tomas. Universidad Austral; ArgentinaFil: Hierro, Rodrigo Federico. Universidad Austral; ArgentinaFil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; ArgentinaFil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Preusse, P.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Geldenhuys, M.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania. South African Weather Service; SudáfricaFil: Krasauskas, L.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Giez, A.. Deutsches Zentrum für Luft- und Raumfahrt; AlemaniaFil: Kaifler, B.. Deutsches Zentrum für Luft- und Raumfahrt; AlemaniaFil: Kaifler, N.. Deutsches Zentrum für Luft- und Raumfahrt; AlemaniaFil: Rapp, M.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania. Ludwig Maximilians Universitat; AlemaniaJohn Wiley & Sons2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219823de la Torre, Alejandro; Alexander, Pedro Manfredo; Marcos, Tomas; Hierro, Rodrigo Federico; Llamedo Soria, Pablo Martin; et al.; A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 1; 1-2023; 1-272169-897X2169-8996CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD037139info:eu-repo/semantics/altIdentifier/doi/10.1029/2022JD037139info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:03Zoai:ri.conicet.gov.ar:11336/219823instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:04.14CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights |
title |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights |
spellingShingle |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights de la Torre, Alejandro ANTARCTIC PENINSULA ENERGY FLUX GRAVITY WAVES PATAGONIA ROTARY SPECTRUM SOUTHTRAC |
title_short |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights |
title_full |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights |
title_fullStr |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights |
title_full_unstemmed |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights |
title_sort |
A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights |
dc.creator.none.fl_str_mv |
de la Torre, Alejandro Alexander, Pedro Manfredo Marcos, Tomas Hierro, Rodrigo Federico Llamedo Soria, Pablo Martin Hormaechea, José Luis Preusse, P. Geldenhuys, M. Krasauskas, L. Giez, A. Kaifler, B. Kaifler, N. Rapp, M. |
author |
de la Torre, Alejandro |
author_facet |
de la Torre, Alejandro Alexander, Pedro Manfredo Marcos, Tomas Hierro, Rodrigo Federico Llamedo Soria, Pablo Martin Hormaechea, José Luis Preusse, P. Geldenhuys, M. Krasauskas, L. Giez, A. Kaifler, B. Kaifler, N. Rapp, M. |
author_role |
author |
author2 |
Alexander, Pedro Manfredo Marcos, Tomas Hierro, Rodrigo Federico Llamedo Soria, Pablo Martin Hormaechea, José Luis Preusse, P. Geldenhuys, M. Krasauskas, L. Giez, A. Kaifler, B. Kaifler, N. Rapp, M. |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ANTARCTIC PENINSULA ENERGY FLUX GRAVITY WAVES PATAGONIA ROTARY SPECTRUM SOUTHTRAC |
topic |
ANTARCTIC PENINSULA ENERGY FLUX GRAVITY WAVES PATAGONIA ROTARY SPECTRUM SOUTHTRAC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
To understand the main orographic and non-orographic sources of gravity waves (GWs) over South America during an Experiment (Rapp et al., 2021, https://doi.org/10.1175/BAMS-D-20-0034.1), we propose the application of a rotational spectral analysis based on methods originally developed for oceanographic studies. This approach is deployed in a complex scenario of large-amplitude GWs by applying it to reanalysis data. We divide the atmospheric region of interest into two height intervals. The simulations are compared with lidar measurements during one of the flights. From the degree of polarization and the total energy of the GWs, the contribution of the upward and downward wave packets is described as a function of their vertical wavenumbers. At low levels, a larger downward energy flux is observed in a few significant harmonics, suggesting inertial GWs radiated at polar night jet levels, and below, near to a cold front. In contrast, the upward GW energy flux, per unit area, is larger than the downward flux, as expected over mountainous areas. The main sub-regions of upward GW energy flux are located above Patagonia, the Antarctic Peninsula and only some oceanic sectors. Above the sea, there are alternating sub-regions dominated by linearly polarized GWs and sectors of downward GWs. At the upper levels, the total available GW energy per unit mass is higher than at the lower levels. Regions with different degrees of polarization are distributed in elongated bands. A satisfactory comparison is made with an analysis based on the phase difference between temperature and vertical wind disturbances. Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Marcos, Tomas. Universidad Austral; Argentina Fil: Hierro, Rodrigo Federico. Universidad Austral; Argentina Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral; Argentina Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Preusse, P.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania Fil: Geldenhuys, M.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania. South African Weather Service; Sudáfrica Fil: Krasauskas, L.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemania Fil: Giez, A.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania Fil: Kaifler, B.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania Fil: Kaifler, N.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania Fil: Rapp, M.. Deutsches Zentrum für Luft- und Raumfahrt; Alemania. Ludwig Maximilians Universitat; Alemania |
description |
To understand the main orographic and non-orographic sources of gravity waves (GWs) over South America during an Experiment (Rapp et al., 2021, https://doi.org/10.1175/BAMS-D-20-0034.1), we propose the application of a rotational spectral analysis based on methods originally developed for oceanographic studies. This approach is deployed in a complex scenario of large-amplitude GWs by applying it to reanalysis data. We divide the atmospheric region of interest into two height intervals. The simulations are compared with lidar measurements during one of the flights. From the degree of polarization and the total energy of the GWs, the contribution of the upward and downward wave packets is described as a function of their vertical wavenumbers. At low levels, a larger downward energy flux is observed in a few significant harmonics, suggesting inertial GWs radiated at polar night jet levels, and below, near to a cold front. In contrast, the upward GW energy flux, per unit area, is larger than the downward flux, as expected over mountainous areas. The main sub-regions of upward GW energy flux are located above Patagonia, the Antarctic Peninsula and only some oceanic sectors. Above the sea, there are alternating sub-regions dominated by linearly polarized GWs and sectors of downward GWs. At the upper levels, the total available GW energy per unit mass is higher than at the lower levels. Regions with different degrees of polarization are distributed in elongated bands. A satisfactory comparison is made with an analysis based on the phase difference between temperature and vertical wind disturbances. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219823 de la Torre, Alejandro; Alexander, Pedro Manfredo; Marcos, Tomas; Hierro, Rodrigo Federico; Llamedo Soria, Pablo Martin; et al.; A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 1; 1-2023; 1-27 2169-897X 2169-8996 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219823 |
identifier_str_mv |
de la Torre, Alejandro; Alexander, Pedro Manfredo; Marcos, Tomas; Hierro, Rodrigo Federico; Llamedo Soria, Pablo Martin; et al.; A Spectral Rotary Analysis of Gravity Waves: An Application During One of the SOUTHTRAC Flights; John Wiley & Sons; Journal of Geophysical Research: Atmospheres; 128; 1; 1-2023; 1-27 2169-897X 2169-8996 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD037139 info:eu-repo/semantics/altIdentifier/doi/10.1029/2022JD037139 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613545477537792 |
score |
13.070432 |