Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
- Autores
- Alexander, Pedro Manfredo; de la Torre, Alejandro; Kaifler, Natalie; Kaifler, B.; Salvador, Jacobo Omar; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Hormaechea, José Luis
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3° W, −51.6° S) and Río Grande (−67.8° W, −53.8° S), in the neighborhood of the austral tip of South America. This is a well-known GW hot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GW in the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GW structure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GW high season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Kaifler, Natalie. German Aerospace Center; Alemania
Fil: Kaifler, B.. German Aerospace Center; Alemania
Fil: Salvador, Jacobo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina
Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina - Materia
-
GRAVITY WAVES
LIDAR
SOUTHERN PATAGONIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/169977
Ver los metadatos del registro completo
id |
CONICETDig_682f5adce2dbdb3b980ba6377330dc9a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/169977 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity WaveAlexander, Pedro Manfredode la Torre, AlejandroKaifler, NatalieKaifler, B.Salvador, Jacobo OmarLlamedo Soria, Pablo MartinHierro, Rodrigo FedericoHormaechea, José LuisGRAVITY WAVESLIDARSOUTHERN PATAGONIAhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3° W, −51.6° S) and Río Grande (−67.8° W, −53.8° S), in the neighborhood of the austral tip of South America. This is a well-known GW hot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GW in the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GW structure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GW high season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Kaifler, Natalie. German Aerospace Center; AlemaniaFil: Kaifler, B.. German Aerospace Center; AlemaniaFil: Salvador, Jacobo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; ArgentinaFil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaJohn Wiley & Sons Inc.2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/169977Alexander, Pedro Manfredo; de la Torre, Alejandro; Kaifler, Natalie; Kaifler, B.; Salvador, Jacobo Omar; et al.; Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave; John Wiley & Sons Inc.; Earth and Space Science; 7; 7; 7-2020; 1-122333-5084CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1029/2020EA001074info:eu-repo/semantics/altIdentifier/doi/10.1029/2020EA001074info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:29Zoai:ri.conicet.gov.ar:11336/169977instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:30.042CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
spellingShingle |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave Alexander, Pedro Manfredo GRAVITY WAVES LIDAR SOUTHERN PATAGONIA |
title_short |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title_full |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title_fullStr |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title_full_unstemmed |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
title_sort |
Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave |
dc.creator.none.fl_str_mv |
Alexander, Pedro Manfredo de la Torre, Alejandro Kaifler, Natalie Kaifler, B. Salvador, Jacobo Omar Llamedo Soria, Pablo Martin Hierro, Rodrigo Federico Hormaechea, José Luis |
author |
Alexander, Pedro Manfredo |
author_facet |
Alexander, Pedro Manfredo de la Torre, Alejandro Kaifler, Natalie Kaifler, B. Salvador, Jacobo Omar Llamedo Soria, Pablo Martin Hierro, Rodrigo Federico Hormaechea, José Luis |
author_role |
author |
author2 |
de la Torre, Alejandro Kaifler, Natalie Kaifler, B. Salvador, Jacobo Omar Llamedo Soria, Pablo Martin Hierro, Rodrigo Federico Hormaechea, José Luis |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
GRAVITY WAVES LIDAR SOUTHERN PATAGONIA |
topic |
GRAVITY WAVES LIDAR SOUTHERN PATAGONIA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3° W, −51.6° S) and Río Grande (−67.8° W, −53.8° S), in the neighborhood of the austral tip of South America. This is a well-known GW hot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GW in the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GW structure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GW high season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars. Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina Fil: Kaifler, Natalie. German Aerospace Center; Alemania Fil: Kaifler, B.. German Aerospace Center; Alemania Fil: Salvador, Jacobo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina Fil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina |
description |
Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3° W, −51.6° S) and Río Grande (−67.8° W, −53.8° S), in the neighborhood of the austral tip of South America. This is a well-known GW hot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GW in the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GW structure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GW high season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/169977 Alexander, Pedro Manfredo; de la Torre, Alejandro; Kaifler, Natalie; Kaifler, B.; Salvador, Jacobo Omar; et al.; Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave; John Wiley & Sons Inc.; Earth and Space Science; 7; 7; 7-2020; 1-12 2333-5084 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/169977 |
identifier_str_mv |
Alexander, Pedro Manfredo; de la Torre, Alejandro; Kaifler, Natalie; Kaifler, B.; Salvador, Jacobo Omar; et al.; Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave; John Wiley & Sons Inc.; Earth and Space Science; 7; 7; 7-2020; 1-12 2333-5084 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1029/2020EA001074 info:eu-repo/semantics/altIdentifier/doi/10.1029/2020EA001074 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc. |
publisher.none.fl_str_mv |
John Wiley & Sons Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614433044692992 |
score |
13.069144 |