Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave

Autores
Alexander, Pedro Manfredo; de la Torre, Alejandro; Kaifler, Natalie; Kaifler, B.; Salvador, Jacobo Omar; Llamedo Soria, Pablo Martin; Hierro, Rodrigo Federico; Hormaechea, José Luis
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3° W, −51.6° S) and Río Grande (−67.8° W, −53.8° S), in the neighborhood of the austral tip of South America. This is a well-known GW hot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GW in the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GW structure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GW high season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Kaifler, Natalie. German Aerospace Center; Alemania
Fil: Kaifler, B.. German Aerospace Center; Alemania
Fil: Salvador, Jacobo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina
Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Materia
GRAVITY WAVES
LIDAR
SOUTHERN PATAGONIA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/169977

id CONICETDig_682f5adce2dbdb3b980ba6377330dc9a
oai_identifier_str oai:ri.conicet.gov.ar:11336/169977
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity WaveAlexander, Pedro Manfredode la Torre, AlejandroKaifler, NatalieKaifler, B.Salvador, Jacobo OmarLlamedo Soria, Pablo MartinHierro, Rodrigo FedericoHormaechea, José LuisGRAVITY WAVESLIDARSOUTHERN PATAGONIAhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3° W, −51.6° S) and Río Grande (−67.8° W, −53.8° S), in the neighborhood of the austral tip of South America. This is a well-known GW hot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GW in the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GW structure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GW high season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Kaifler, Natalie. German Aerospace Center; AlemaniaFil: Kaifler, B.. German Aerospace Center; AlemaniaFil: Salvador, Jacobo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; ArgentinaFil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaJohn Wiley & Sons Inc.2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/169977Alexander, Pedro Manfredo; de la Torre, Alejandro; Kaifler, Natalie; Kaifler, B.; Salvador, Jacobo Omar; et al.; Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave; John Wiley & Sons Inc.; Earth and Space Science; 7; 7; 7-2020; 1-122333-5084CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1029/2020EA001074info:eu-repo/semantics/altIdentifier/doi/10.1029/2020EA001074info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:29Zoai:ri.conicet.gov.ar:11336/169977instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:30.042CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
title Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
spellingShingle Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
Alexander, Pedro Manfredo
GRAVITY WAVES
LIDAR
SOUTHERN PATAGONIA
title_short Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
title_full Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
title_fullStr Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
title_full_unstemmed Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
title_sort Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave
dc.creator.none.fl_str_mv Alexander, Pedro Manfredo
de la Torre, Alejandro
Kaifler, Natalie
Kaifler, B.
Salvador, Jacobo Omar
Llamedo Soria, Pablo Martin
Hierro, Rodrigo Federico
Hormaechea, José Luis
author Alexander, Pedro Manfredo
author_facet Alexander, Pedro Manfredo
de la Torre, Alejandro
Kaifler, Natalie
Kaifler, B.
Salvador, Jacobo Omar
Llamedo Soria, Pablo Martin
Hierro, Rodrigo Federico
Hormaechea, José Luis
author_role author
author2 de la Torre, Alejandro
Kaifler, Natalie
Kaifler, B.
Salvador, Jacobo Omar
Llamedo Soria, Pablo Martin
Hierro, Rodrigo Federico
Hormaechea, José Luis
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GRAVITY WAVES
LIDAR
SOUTHERN PATAGONIA
topic GRAVITY WAVES
LIDAR
SOUTHERN PATAGONIA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3° W, −51.6° S) and Río Grande (−67.8° W, −53.8° S), in the neighborhood of the austral tip of South America. This is a well-known GW hot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GW in the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GW structure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GW high season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.
Fil: Alexander, Pedro Manfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: de la Torre, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Kaifler, Natalie. German Aerospace Center; Alemania
Fil: Kaifler, B.. German Aerospace Center; Alemania
Fil: Salvador, Jacobo Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas para la Defensa. Centro de Investigación en Láseres y Aplicaciones; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Río Gallegos; Argentina
Fil: Llamedo Soria, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Hierro, Rodrigo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Hormaechea, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
description Gravity waves (GW) are a crucial coupling mechanism for the exchange of energy and momentum flux (MF) between the lower, middle, and upper layers of the atmosphere. Among the remote instruments used to study them, there has been a continuous increment in the last years in the installation and use of lidars (light detection and ranging) all over the globe. Two of them, which are only night operating, are located in Río Gallegos (−69.3° W, −51.6° S) and Río Grande (−67.8° W, −53.8° S), in the neighborhood of the austral tip of South America. This is a well-known GW hot spot from late autumn to early spring. Neither the source for this intense activity nor the extent of its effects have been yet fully elucidated. In the last years, different methods that combine diverse retrieval techniques have been presented in order to describe the three-dimensional (3-D) structure of observed GW, their propagation direction, their energy, and the MF that they carry. Assuming the presence of a dominant GW in the covered region, we develop here a technique that uses the temperature profiles from two simultaneously working close lidars to infer the vertical wavelength, ground-based frequency, and horizontal wavelength along the direction joining both instruments. If in addition within the time and spatial frame of both lidars there is also a retrieval from a satellite like SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), then we show that it is possible to infer also the second horizontal wavelength and therefore reproduce the full 3-D GW structure. Our method becomes verified with an example that includes tests that corroborate that both lidars and the satellite are sampling the same GW. The improvement of the Río Gallegos lidar performance could lead in the future to the observation of a wealth of cases during the GW high season. Between 8 and 14 hr (depending on the month) of continuous nighttime data could be obtained in the stratosphere and mesosphere in simultaneous soundings from both ground-based lidars.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/169977
Alexander, Pedro Manfredo; de la Torre, Alejandro; Kaifler, Natalie; Kaifler, B.; Salvador, Jacobo Omar; et al.; Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave; John Wiley & Sons Inc.; Earth and Space Science; 7; 7; 7-2020; 1-12
2333-5084
CONICET Digital
CONICET
url http://hdl.handle.net/11336/169977
identifier_str_mv Alexander, Pedro Manfredo; de la Torre, Alejandro; Kaifler, Natalie; Kaifler, B.; Salvador, Jacobo Omar; et al.; Temperature Profiles From Two Close Lidars and a Satellite to Infer the Structure of a Dominant Gravity Wave; John Wiley & Sons Inc.; Earth and Space Science; 7; 7; 7-2020; 1-12
2333-5084
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1029/2020EA001074
info:eu-repo/semantics/altIdentifier/doi/10.1029/2020EA001074
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc.
publisher.none.fl_str_mv John Wiley & Sons Inc.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614433044692992
score 13.069144