Evaluation of CAM-CHEM VSL model performance during Southtrac campaign
- Autores
- Berná Peña, Lucas Luciano; Lopez Noreña, Ana Isabel; Puliafito, Salvador Enrique; Barreras, Javier Marcelo; Engel, Andreas; Jesswein, Markus; Cuevas, Carlos A.; Saiz Lopez, Alfonso; Fernandez, Rafael Pedro
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In the framework of the SouthTRAC Campaign (Transport and Composition of the Southern Hemisphere Upper Troposphere and Lower Stratosphere) based on Rio Grande, Argentina, a local research group from CONICET (Argentine National Research Council) joined the German consortium maintaining the HALO research aircraft (High-Altitude and LOng-range aircraft) to help with the flight planning and evaluation of the chemical composition of the upper troposphere and lower stratosphere within the ozone hole periphery. The SouthTRAC aircraft campaign was carried out in two phases which took place in September and November 2019, respectively. With the purpose of providing additional information of the atmospheric composition of brominated Very Short-Lived (VSLBr) species and compare with HALO observations during the transfer and campaign flights, a CAM-Chem (Community Atmosphere Model with Chemistry) global chemistry-climate simulation was conducted. The model setup used in the halogenated CAM-Chem simulation had a 1° x 1.25° lat-lon resolution, 56 hybrid vertical levels from the surface to the middle stratosphere and considered assimilated meteorology from MERRA, including an explicit treatment of VSLBr sources and chemistry. Model output of VSLBr, long-lived bromine and chlorine (LLBr and LLCl) species and ozone mixing ratios, as well as the main inorganic halogen reactive and reservoir species and gas/heterogeneous phase reaction rates affecting lowermost stratospheric ozone were analyzed in horizontal domains and vertical cross-sections across each flightpath. The model performance with respect to the HALO observations has a general good agreement, presenting better results for mid latitudes (between 30º S and 50º S) than for southern latitudes (>50º S). In particular, CAM-Chem timeseries consistently reproduced the spatio-temporal variation of the main VSLBr species (CH2Br2 and CHBr3), including the sharp variations observed across the tropopause. For both VSLBr as well as for LLCl compounds such as CFC-12, the Pearson correlation coefficient r obtained during each of the flights ranged between 0.7 and 0.9, while the Normalized Mean Bias (NMB) was smaller than 8% for almost every flight. Regarding LLBr CH3Br, the correlation with the aircraft observations is high (r>0.9) but the inter-hemispheric variability during transfer flights is not fully captured. For Ozone, the model presents mid to high correlation with respect to measures (0.5
Fil: Berná Peña, Lucas Luciano. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
Fil: Lopez Noreña, Ana Isabel. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Puliafito, Salvador Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
Fil: Barreras, Javier Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Engel, Andreas. Goethe Universitat Frankfurt; Alemania
Fil: Jesswein, Markus. Goethe Universitat Frankfurt; Alemania
Fil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
Fil: Saiz Lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
EGU General Assembly 2021
Austria
European Geosciences Union - Materia
-
VERY SHORT LIVED POLLUTANT
MODEL
CAM-CHEM
SOUTHTRAC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/175563
Ver los metadatos del registro completo
id |
CONICETDig_1ad9686c975db35c67c44240b5ae6865 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/175563 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaignBerná Peña, Lucas LucianoLopez Noreña, Ana IsabelPuliafito, Salvador EnriqueBarreras, Javier MarceloEngel, AndreasJesswein, MarkusCuevas, Carlos A.Saiz Lopez, AlfonsoFernandez, Rafael PedroVERY SHORT LIVED POLLUTANTMODELCAM-CHEMSOUTHTRAChttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In the framework of the SouthTRAC Campaign (Transport and Composition of the Southern Hemisphere Upper Troposphere and Lower Stratosphere) based on Rio Grande, Argentina, a local research group from CONICET (Argentine National Research Council) joined the German consortium maintaining the HALO research aircraft (High-Altitude and LOng-range aircraft) to help with the flight planning and evaluation of the chemical composition of the upper troposphere and lower stratosphere within the ozone hole periphery. The SouthTRAC aircraft campaign was carried out in two phases which took place in September and November 2019, respectively. With the purpose of providing additional information of the atmospheric composition of brominated Very Short-Lived (VSLBr) species and compare with HALO observations during the transfer and campaign flights, a CAM-Chem (Community Atmosphere Model with Chemistry) global chemistry-climate simulation was conducted. The model setup used in the halogenated CAM-Chem simulation had a 1° x 1.25° lat-lon resolution, 56 hybrid vertical levels from the surface to the middle stratosphere and considered assimilated meteorology from MERRA, including an explicit treatment of VSLBr sources and chemistry. Model output of VSLBr, long-lived bromine and chlorine (LLBr and LLCl) species and ozone mixing ratios, as well as the main inorganic halogen reactive and reservoir species and gas/heterogeneous phase reaction rates affecting lowermost stratospheric ozone were analyzed in horizontal domains and vertical cross-sections across each flightpath. The model performance with respect to the HALO observations has a general good agreement, presenting better results for mid latitudes (between 30º S and 50º S) than for southern latitudes (>50º S). In particular, CAM-Chem timeseries consistently reproduced the spatio-temporal variation of the main VSLBr species (CH2Br2 and CHBr3), including the sharp variations observed across the tropopause. For both VSLBr as well as for LLCl compounds such as CFC-12, the Pearson correlation coefficient r obtained during each of the flights ranged between 0.7 and 0.9, while the Normalized Mean Bias (NMB) was smaller than 8% for almost every flight. Regarding LLBr CH3Br, the correlation with the aircraft observations is high (r>0.9) but the inter-hemispheric variability during transfer flights is not fully captured. For Ozone, the model presents mid to high correlation with respect to measures (0.5Fil: Berná Peña, Lucas Luciano. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Lopez Noreña, Ana Isabel. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Puliafito, Salvador Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Barreras, Javier Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Engel, Andreas. Goethe Universitat Frankfurt; AlemaniaFil: Jesswein, Markus. Goethe Universitat Frankfurt; AlemaniaFil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Saiz Lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaEGU General Assembly 2021AustriaEuropean Geosciences UnionCopernicus Publications2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/175563Evaluation of CAM-CHEM VSL model performance during Southtrac campaign; EGU General Assembly 2021; Austria; 2021; 1-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://doi.org/10.5194/egusphere-egu21-2298Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:12Zoai:ri.conicet.gov.ar:11336/175563instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:13.128CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign |
title |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign |
spellingShingle |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign Berná Peña, Lucas Luciano VERY SHORT LIVED POLLUTANT MODEL CAM-CHEM SOUTHTRAC |
title_short |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign |
title_full |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign |
title_fullStr |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign |
title_full_unstemmed |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign |
title_sort |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign |
dc.creator.none.fl_str_mv |
Berná Peña, Lucas Luciano Lopez Noreña, Ana Isabel Puliafito, Salvador Enrique Barreras, Javier Marcelo Engel, Andreas Jesswein, Markus Cuevas, Carlos A. Saiz Lopez, Alfonso Fernandez, Rafael Pedro |
author |
Berná Peña, Lucas Luciano |
author_facet |
Berná Peña, Lucas Luciano Lopez Noreña, Ana Isabel Puliafito, Salvador Enrique Barreras, Javier Marcelo Engel, Andreas Jesswein, Markus Cuevas, Carlos A. Saiz Lopez, Alfonso Fernandez, Rafael Pedro |
author_role |
author |
author2 |
Lopez Noreña, Ana Isabel Puliafito, Salvador Enrique Barreras, Javier Marcelo Engel, Andreas Jesswein, Markus Cuevas, Carlos A. Saiz Lopez, Alfonso Fernandez, Rafael Pedro |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
VERY SHORT LIVED POLLUTANT MODEL CAM-CHEM SOUTHTRAC |
topic |
VERY SHORT LIVED POLLUTANT MODEL CAM-CHEM SOUTHTRAC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the framework of the SouthTRAC Campaign (Transport and Composition of the Southern Hemisphere Upper Troposphere and Lower Stratosphere) based on Rio Grande, Argentina, a local research group from CONICET (Argentine National Research Council) joined the German consortium maintaining the HALO research aircraft (High-Altitude and LOng-range aircraft) to help with the flight planning and evaluation of the chemical composition of the upper troposphere and lower stratosphere within the ozone hole periphery. The SouthTRAC aircraft campaign was carried out in two phases which took place in September and November 2019, respectively. With the purpose of providing additional information of the atmospheric composition of brominated Very Short-Lived (VSLBr) species and compare with HALO observations during the transfer and campaign flights, a CAM-Chem (Community Atmosphere Model with Chemistry) global chemistry-climate simulation was conducted. The model setup used in the halogenated CAM-Chem simulation had a 1° x 1.25° lat-lon resolution, 56 hybrid vertical levels from the surface to the middle stratosphere and considered assimilated meteorology from MERRA, including an explicit treatment of VSLBr sources and chemistry. Model output of VSLBr, long-lived bromine and chlorine (LLBr and LLCl) species and ozone mixing ratios, as well as the main inorganic halogen reactive and reservoir species and gas/heterogeneous phase reaction rates affecting lowermost stratospheric ozone were analyzed in horizontal domains and vertical cross-sections across each flightpath. The model performance with respect to the HALO observations has a general good agreement, presenting better results for mid latitudes (between 30º S and 50º S) than for southern latitudes (>50º S). In particular, CAM-Chem timeseries consistently reproduced the spatio-temporal variation of the main VSLBr species (CH2Br2 and CHBr3), including the sharp variations observed across the tropopause. For both VSLBr as well as for LLCl compounds such as CFC-12, the Pearson correlation coefficient r obtained during each of the flights ranged between 0.7 and 0.9, while the Normalized Mean Bias (NMB) was smaller than 8% for almost every flight. Regarding LLBr CH3Br, the correlation with the aircraft observations is high (r>0.9) but the inter-hemispheric variability during transfer flights is not fully captured. For Ozone, the model presents mid to high correlation with respect to measures (0.5 Fil: Berná Peña, Lucas Luciano. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina Fil: Lopez Noreña, Ana Isabel. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Puliafito, Salvador Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina Fil: Barreras, Javier Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Engel, Andreas. Goethe Universitat Frankfurt; Alemania Fil: Jesswein, Markus. Goethe Universitat Frankfurt; Alemania Fil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España Fil: Saiz Lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina EGU General Assembly 2021 Austria European Geosciences Union |
description |
In the framework of the SouthTRAC Campaign (Transport and Composition of the Southern Hemisphere Upper Troposphere and Lower Stratosphere) based on Rio Grande, Argentina, a local research group from CONICET (Argentine National Research Council) joined the German consortium maintaining the HALO research aircraft (High-Altitude and LOng-range aircraft) to help with the flight planning and evaluation of the chemical composition of the upper troposphere and lower stratosphere within the ozone hole periphery. The SouthTRAC aircraft campaign was carried out in two phases which took place in September and November 2019, respectively. With the purpose of providing additional information of the atmospheric composition of brominated Very Short-Lived (VSLBr) species and compare with HALO observations during the transfer and campaign flights, a CAM-Chem (Community Atmosphere Model with Chemistry) global chemistry-climate simulation was conducted. The model setup used in the halogenated CAM-Chem simulation had a 1° x 1.25° lat-lon resolution, 56 hybrid vertical levels from the surface to the middle stratosphere and considered assimilated meteorology from MERRA, including an explicit treatment of VSLBr sources and chemistry. Model output of VSLBr, long-lived bromine and chlorine (LLBr and LLCl) species and ozone mixing ratios, as well as the main inorganic halogen reactive and reservoir species and gas/heterogeneous phase reaction rates affecting lowermost stratospheric ozone were analyzed in horizontal domains and vertical cross-sections across each flightpath. The model performance with respect to the HALO observations has a general good agreement, presenting better results for mid latitudes (between 30º S and 50º S) than for southern latitudes (>50º S). In particular, CAM-Chem timeseries consistently reproduced the spatio-temporal variation of the main VSLBr species (CH2Br2 and CHBr3), including the sharp variations observed across the tropopause. For both VSLBr as well as for LLCl compounds such as CFC-12, the Pearson correlation coefficient r obtained during each of the flights ranged between 0.7 and 0.9, while the Normalized Mean Bias (NMB) was smaller than 8% for almost every flight. Regarding LLBr CH3Br, the correlation with the aircraft observations is high (r>0.9) but the inter-hemispheric variability during transfer flights is not fully captured. For Ozone, the model presents mid to high correlation with respect to measures (0.5 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/175563 Evaluation of CAM-CHEM VSL model performance during Southtrac campaign; EGU General Assembly 2021; Austria; 2021; 1-2 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/175563 |
identifier_str_mv |
Evaluation of CAM-CHEM VSL model performance during Southtrac campaign; EGU General Assembly 2021; Austria; 2021; 1-2 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.5194/egusphere-egu21-2298 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Copernicus Publications |
publisher.none.fl_str_mv |
Copernicus Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614322151489536 |
score |
13.070432 |