Information Theory Quantifiers in Cryptocurrency Time Series Analysis
- Autores
- Suriano, Micaela Paula; Caram, Leonidas Facundo; Caiafa, César Federico; Merlino, Hernán Daniel; Rosso, Osvaldo Anibal
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper investigates the temporal evolution of cryptocurrency time series using information measures such as complexity, entropy, and Fisher information. The main objective is to differentiate between various levels of randomness and chaos. The methodology was applied to 176 daily closing price time series of different cryptocurrencies, from October 2015 to October 2024, with more than 30 days of data and not completely null. Complexity–entropy causality plane (CECP) analysis reveals that daily cryptocurrency series with lengths of two years or less exhibit chaotic behavior, while those longer than two years display stochastic behavior. Most longer series resemble colored noise, with the parameter k varying between 0 and 2. Additionally, Natural Language Processing (NLP) analysis identified the most relevant terms in each white paper, facilitating a clustering method that resulted in four distinct clusters. However, no significant characteristics were found across these clusters in terms of the dynamics of the time series. This finding challenges the assumption that project narratives dictate market behavior. For this reason, investment recommendations should prioritize real-time informational metrics over whitepaper content.
Fil: Suriano, Micaela Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Hidráulica; Argentina
Fil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electrónica; Argentina
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Merlino, Hernán Daniel. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
permutation entropy
statistical complexity
cryptocurrency - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/276599
Ver los metadatos del registro completo
| id |
CONICETDig_f5f45cd0f3ee2896597e85d867a16974 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/276599 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Information Theory Quantifiers in Cryptocurrency Time Series AnalysisSuriano, Micaela PaulaCaram, Leonidas FacundoCaiafa, César FedericoMerlino, Hernán DanielRosso, Osvaldo Anibalpermutation entropystatistical complexitycryptocurrencyhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This paper investigates the temporal evolution of cryptocurrency time series using information measures such as complexity, entropy, and Fisher information. The main objective is to differentiate between various levels of randomness and chaos. The methodology was applied to 176 daily closing price time series of different cryptocurrencies, from October 2015 to October 2024, with more than 30 days of data and not completely null. Complexity–entropy causality plane (CECP) analysis reveals that daily cryptocurrency series with lengths of two years or less exhibit chaotic behavior, while those longer than two years display stochastic behavior. Most longer series resemble colored noise, with the parameter k varying between 0 and 2. Additionally, Natural Language Processing (NLP) analysis identified the most relevant terms in each white paper, facilitating a clustering method that resulted in four distinct clusters. However, no significant characteristics were found across these clusters in terms of the dynamics of the time series. This finding challenges the assumption that project narratives dictate market behavior. For this reason, investment recommendations should prioritize real-time informational metrics over whitepaper content.Fil: Suriano, Micaela Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Hidráulica; ArgentinaFil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electrónica; ArgentinaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Merlino, Hernán Daniel. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaMolecular Diversity Preservation International2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276599Suriano, Micaela Paula; Caram, Leonidas Facundo; Caiafa, César Federico; Merlino, Hernán Daniel; Rosso, Osvaldo Anibal; Information Theory Quantifiers in Cryptocurrency Time Series Analysis; Molecular Diversity Preservation International; Entropy; 27; 4; 4-2025; 1-161099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/4/450info:eu-repo/semantics/altIdentifier/doi/10.3390/e27040450info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:17:07Zoai:ri.conicet.gov.ar:11336/276599instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:17:07.965CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Information Theory Quantifiers in Cryptocurrency Time Series Analysis |
| title |
Information Theory Quantifiers in Cryptocurrency Time Series Analysis |
| spellingShingle |
Information Theory Quantifiers in Cryptocurrency Time Series Analysis Suriano, Micaela Paula permutation entropy statistical complexity cryptocurrency |
| title_short |
Information Theory Quantifiers in Cryptocurrency Time Series Analysis |
| title_full |
Information Theory Quantifiers in Cryptocurrency Time Series Analysis |
| title_fullStr |
Information Theory Quantifiers in Cryptocurrency Time Series Analysis |
| title_full_unstemmed |
Information Theory Quantifiers in Cryptocurrency Time Series Analysis |
| title_sort |
Information Theory Quantifiers in Cryptocurrency Time Series Analysis |
| dc.creator.none.fl_str_mv |
Suriano, Micaela Paula Caram, Leonidas Facundo Caiafa, César Federico Merlino, Hernán Daniel Rosso, Osvaldo Anibal |
| author |
Suriano, Micaela Paula |
| author_facet |
Suriano, Micaela Paula Caram, Leonidas Facundo Caiafa, César Federico Merlino, Hernán Daniel Rosso, Osvaldo Anibal |
| author_role |
author |
| author2 |
Caram, Leonidas Facundo Caiafa, César Federico Merlino, Hernán Daniel Rosso, Osvaldo Anibal |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
permutation entropy statistical complexity cryptocurrency |
| topic |
permutation entropy statistical complexity cryptocurrency |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
This paper investigates the temporal evolution of cryptocurrency time series using information measures such as complexity, entropy, and Fisher information. The main objective is to differentiate between various levels of randomness and chaos. The methodology was applied to 176 daily closing price time series of different cryptocurrencies, from October 2015 to October 2024, with more than 30 days of data and not completely null. Complexity–entropy causality plane (CECP) analysis reveals that daily cryptocurrency series with lengths of two years or less exhibit chaotic behavior, while those longer than two years display stochastic behavior. Most longer series resemble colored noise, with the parameter k varying between 0 and 2. Additionally, Natural Language Processing (NLP) analysis identified the most relevant terms in each white paper, facilitating a clustering method that resulted in four distinct clusters. However, no significant characteristics were found across these clusters in terms of the dynamics of the time series. This finding challenges the assumption that project narratives dictate market behavior. For this reason, investment recommendations should prioritize real-time informational metrics over whitepaper content. Fil: Suriano, Micaela Paula. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Hidráulica; Argentina Fil: Caram, Leonidas Facundo. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electrónica; Argentina Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Merlino, Hernán Daniel. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
| description |
This paper investigates the temporal evolution of cryptocurrency time series using information measures such as complexity, entropy, and Fisher information. The main objective is to differentiate between various levels of randomness and chaos. The methodology was applied to 176 daily closing price time series of different cryptocurrencies, from October 2015 to October 2024, with more than 30 days of data and not completely null. Complexity–entropy causality plane (CECP) analysis reveals that daily cryptocurrency series with lengths of two years or less exhibit chaotic behavior, while those longer than two years display stochastic behavior. Most longer series resemble colored noise, with the parameter k varying between 0 and 2. Additionally, Natural Language Processing (NLP) analysis identified the most relevant terms in each white paper, facilitating a clustering method that resulted in four distinct clusters. However, no significant characteristics were found across these clusters in terms of the dynamics of the time series. This finding challenges the assumption that project narratives dictate market behavior. For this reason, investment recommendations should prioritize real-time informational metrics over whitepaper content. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/276599 Suriano, Micaela Paula; Caram, Leonidas Facundo; Caiafa, César Federico; Merlino, Hernán Daniel; Rosso, Osvaldo Anibal; Information Theory Quantifiers in Cryptocurrency Time Series Analysis; Molecular Diversity Preservation International; Entropy; 27; 4; 4-2025; 1-16 1099-4300 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/276599 |
| identifier_str_mv |
Suriano, Micaela Paula; Caram, Leonidas Facundo; Caiafa, César Federico; Merlino, Hernán Daniel; Rosso, Osvaldo Anibal; Information Theory Quantifiers in Cryptocurrency Time Series Analysis; Molecular Diversity Preservation International; Entropy; 27; 4; 4-2025; 1-16 1099-4300 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/27/4/450 info:eu-repo/semantics/altIdentifier/doi/10.3390/e27040450 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335019722276864 |
| score |
12.952241 |