Products of projections and positive operators

Autores
Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article is devoted to the study of the set T of all products PA with P an orthogonal projection and A a positive (semidefinite) operator. We describe this set and study optimal factorizations. We also relate this factorization with the notion of compatibility and explore the polar decomposition of the operators in T.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
Projections
Positive Operators
Polar Decomposition
Compatibility
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3361

id CONICETDig_f56c7b49f806a173310d0f7ec690b727
oai_identifier_str oai:ri.conicet.gov.ar:11336/3361
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Products of projections and positive operatorsArias, Maria LauraCorach, GustavoGonzalez, Maria CelesteProjectionsPositive OperatorsPolar DecompositionCompatibilityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This article is devoted to the study of the set T of all products PA with P an orthogonal projection and A a positive (semidefinite) operator. We describe this set and study optimal factorizations. We also relate this factorization with the notion of compatibility and explore the polar decomposition of the operators in T.Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science Inc2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3361Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Products of projections and positive operators; Elsevier Science Inc; Linear Algebra And Its Applications; 439; 7; 10-2013; 1730-17410024-3795enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.05.008info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379513003340info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:13Zoai:ri.conicet.gov.ar:11336/3361instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:13.642CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Products of projections and positive operators
title Products of projections and positive operators
spellingShingle Products of projections and positive operators
Arias, Maria Laura
Projections
Positive Operators
Polar Decomposition
Compatibility
title_short Products of projections and positive operators
title_full Products of projections and positive operators
title_fullStr Products of projections and positive operators
title_full_unstemmed Products of projections and positive operators
title_sort Products of projections and positive operators
dc.creator.none.fl_str_mv Arias, Maria Laura
Corach, Gustavo
Gonzalez, Maria Celeste
author Arias, Maria Laura
author_facet Arias, Maria Laura
Corach, Gustavo
Gonzalez, Maria Celeste
author_role author
author2 Corach, Gustavo
Gonzalez, Maria Celeste
author2_role author
author
dc.subject.none.fl_str_mv Projections
Positive Operators
Polar Decomposition
Compatibility
topic Projections
Positive Operators
Polar Decomposition
Compatibility
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This article is devoted to the study of the set T of all products PA with P an orthogonal projection and A a positive (semidefinite) operator. We describe this set and study optimal factorizations. We also relate this factorization with the notion of compatibility and explore the polar decomposition of the operators in T.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description This article is devoted to the study of the set T of all products PA with P an orthogonal projection and A a positive (semidefinite) operator. We describe this set and study optimal factorizations. We also relate this factorization with the notion of compatibility and explore the polar decomposition of the operators in T.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3361
Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Products of projections and positive operators; Elsevier Science Inc; Linear Algebra And Its Applications; 439; 7; 10-2013; 1730-1741
0024-3795
url http://hdl.handle.net/11336/3361
identifier_str_mv Arias, Maria Laura; Corach, Gustavo; Gonzalez, Maria Celeste; Products of projections and positive operators; Elsevier Science Inc; Linear Algebra And Its Applications; 439; 7; 10-2013; 1730-1741
0024-3795
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.05.008
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379513003340
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269625981599744
score 13.13397