Projections in operator ranges

Autores
Corach, Gustavo; Maestripieri, Alejandra; Stojanoff, Demetrio
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.
Facultad de Ciencias Exactas
Materia
Matemática
Oblique projections
Operator ranges
Positive operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83108

id SEDICI_68293f101e4a5dcb8bd5657bea09aa9f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83108
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Projections in operator rangesCorach, GustavoMaestripieri, AlejandraStojanoff, DemetrioMatemáticaOblique projectionsOperator rangesPositive operatorsIf H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.Facultad de Ciencias Exactas2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf765-778http://sedici.unlp.edu.ar/handle/10915/83108enginfo:eu-repo/semantics/altIdentifier/issn/0002-9939info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-05-08007-Xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:56:37Zoai:sedici.unlp.edu.ar:10915/83108Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:56:37.37SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Projections in operator ranges
title Projections in operator ranges
spellingShingle Projections in operator ranges
Corach, Gustavo
Matemática
Oblique projections
Operator ranges
Positive operators
title_short Projections in operator ranges
title_full Projections in operator ranges
title_fullStr Projections in operator ranges
title_full_unstemmed Projections in operator ranges
title_sort Projections in operator ranges
dc.creator.none.fl_str_mv Corach, Gustavo
Maestripieri, Alejandra
Stojanoff, Demetrio
author Corach, Gustavo
author_facet Corach, Gustavo
Maestripieri, Alejandra
Stojanoff, Demetrio
author_role author
author2 Maestripieri, Alejandra
Stojanoff, Demetrio
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Oblique projections
Operator ranges
Positive operators
topic Matemática
Oblique projections
Operator ranges
Positive operators
dc.description.none.fl_txt_mv If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.
Facultad de Ciencias Exactas
description If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83108
url http://sedici.unlp.edu.ar/handle/10915/83108
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0002-9939
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-05-08007-X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
765-778
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783173088772096
score 12.928904