Projections in operator ranges
- Autores
- Corach, Gustavo; Maestripieri, Alejandra; Stojanoff, Demetrio
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.
Facultad de Ciencias Exactas - Materia
-
Matemática
Oblique projections
Operator ranges
Positive operators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83108
Ver los metadatos del registro completo
| id |
SEDICI_68293f101e4a5dcb8bd5657bea09aa9f |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83108 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Projections in operator rangesCorach, GustavoMaestripieri, AlejandraStojanoff, DemetrioMatemáticaOblique projectionsOperator rangesPositive operatorsIf H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure.Facultad de Ciencias Exactas2006info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf765-778http://sedici.unlp.edu.ar/handle/10915/83108enginfo:eu-repo/semantics/altIdentifier/issn/0002-9939info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-05-08007-Xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:40:02Zoai:sedici.unlp.edu.ar:10915/83108Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:40:02.771SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Projections in operator ranges |
| title |
Projections in operator ranges |
| spellingShingle |
Projections in operator ranges Corach, Gustavo Matemática Oblique projections Operator ranges Positive operators |
| title_short |
Projections in operator ranges |
| title_full |
Projections in operator ranges |
| title_fullStr |
Projections in operator ranges |
| title_full_unstemmed |
Projections in operator ranges |
| title_sort |
Projections in operator ranges |
| dc.creator.none.fl_str_mv |
Corach, Gustavo Maestripieri, Alejandra Stojanoff, Demetrio |
| author |
Corach, Gustavo |
| author_facet |
Corach, Gustavo Maestripieri, Alejandra Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Maestripieri, Alejandra Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Matemática Oblique projections Operator ranges Positive operators |
| topic |
Matemática Oblique projections Operator ranges Positive operators |
| dc.description.none.fl_txt_mv |
If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure. Facultad de Ciencias Exactas |
| description |
If H is a Hilbert space, A is a positive bounded linear operator on H and S is a closed subspace of H, the relative position between S and A-1 (S⊥) establishes a notion of compatibility. We show that the compatibility of (A, S) is equivalent to the existence of a convenient orthogonal projection in the operator range R(A1/2) with its canonical Hilbertian structure. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83108 |
| url |
http://sedici.unlp.edu.ar/handle/10915/83108 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0002-9939 info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-05-08007-X |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 765-778 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1848605482027057152 |
| score |
12.976206 |