A two phase elliptic singular perturbation problem with a forcing term
- Autores
- Lederman, Claudia Beatriz; Wolanski, Noemi Irene
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the following two phase elliptic singular perturbation problem: Due=be(ue)+fe in WÌRN, where e>0, be(s)=(1/e)b(s/e), with b a Lipschitz function satisfying b>0 in (0,1), bº0 outside (0,1) and òb(s)ds = M . The functions ue and fe are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (e®0) and we show that limit functions are solutions to the two phase free boundary problem Du = f x{mº0} in W ¶{u>0}, |Ñu+|2 - |Ñu-|2 = 2M on WǶ{u>0}, where f = limfe , in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case feº0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary.
Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
FREE BOUNDARY PROBLEM
TWO PHASE
VISCOSITY SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/276544
Ver los metadatos del registro completo
| id |
CONICETDig_f535edeca4f0ca73bc4972cd4736e88a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/276544 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A two phase elliptic singular perturbation problem with a forcing termLederman, Claudia BeatrizWolanski, Noemi IreneFREE BOUNDARY PROBLEMTWO PHASEVISCOSITY SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the following two phase elliptic singular perturbation problem: Due=be(ue)+fe in WÌRN, where e>0, be(s)=(1/e)b(s/e), with b a Lipschitz function satisfying b>0 in (0,1), bº0 outside (0,1) and òb(s)ds = M . The functions ue and fe are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (e®0) and we show that limit functions are solutions to the two phase free boundary problem Du = f x{mº0} in W ¶{u>0}, |Ñu+|2 - |Ñu-|2 = 2M on WǶ{u>0}, where f = limfe , in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case feº0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary.Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaGauthier-Villars/Editions Elsevier2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/276544Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A two phase elliptic singular perturbation problem with a forcing term; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 86; 6; 12-2006; 552-5890021-7824CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021782406001280info:eu-repo/semantics/altIdentifier/doi/10.1016/j.matpur.2006.10.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:20:07Zoai:ri.conicet.gov.ar:11336/276544instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:20:07.803CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A two phase elliptic singular perturbation problem with a forcing term |
| title |
A two phase elliptic singular perturbation problem with a forcing term |
| spellingShingle |
A two phase elliptic singular perturbation problem with a forcing term Lederman, Claudia Beatriz FREE BOUNDARY PROBLEM TWO PHASE VISCOSITY SOLUTIONS |
| title_short |
A two phase elliptic singular perturbation problem with a forcing term |
| title_full |
A two phase elliptic singular perturbation problem with a forcing term |
| title_fullStr |
A two phase elliptic singular perturbation problem with a forcing term |
| title_full_unstemmed |
A two phase elliptic singular perturbation problem with a forcing term |
| title_sort |
A two phase elliptic singular perturbation problem with a forcing term |
| dc.creator.none.fl_str_mv |
Lederman, Claudia Beatriz Wolanski, Noemi Irene |
| author |
Lederman, Claudia Beatriz |
| author_facet |
Lederman, Claudia Beatriz Wolanski, Noemi Irene |
| author_role |
author |
| author2 |
Wolanski, Noemi Irene |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
FREE BOUNDARY PROBLEM TWO PHASE VISCOSITY SOLUTIONS |
| topic |
FREE BOUNDARY PROBLEM TWO PHASE VISCOSITY SOLUTIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the following two phase elliptic singular perturbation problem: Due=be(ue)+fe in WÌRN, where e>0, be(s)=(1/e)b(s/e), with b a Lipschitz function satisfying b>0 in (0,1), bº0 outside (0,1) and òb(s)ds = M . The functions ue and fe are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (e®0) and we show that limit functions are solutions to the two phase free boundary problem Du = f x{mº0} in W ¶{u>0}, |Ñu+|2 - |Ñu-|2 = 2M on WǶ{u>0}, where f = limfe , in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case feº0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary. Fil: Lederman, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
| description |
We study the following two phase elliptic singular perturbation problem: Due=be(ue)+fe in WÌRN, where e>0, be(s)=(1/e)b(s/e), with b a Lipschitz function satisfying b>0 in (0,1), bº0 outside (0,1) and òb(s)ds = M . The functions ue and fe are uniformly bounded. One of the motivations for the study of this problem is that it appears in the analysis of the propagation of flames in the high activation energy limit, when sources are present. We obtain uniform estimates, we pass to the limit (e®0) and we show that limit functions are solutions to the two phase free boundary problem Du = f x{mº0} in W ¶{u>0}, |Ñu+|2 - |Ñu-|2 = 2M on WǶ{u>0}, where f = limfe , in a viscosity sense and in a pointwise sense at regular free boundary points. In addition, we show that the free boundary is smooth and thus limit functions are classical solutions to the free boundary problem, under suitable assumptions. Some of the results obtained are new even in the case feº0. The results in this paper also apply to other combustion models. For instance, models with nonlocal diffusion and/or transport. Several of these applications are discussed here and we get, in some cases, the full regularity of the free boundary. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/276544 Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A two phase elliptic singular perturbation problem with a forcing term; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 86; 6; 12-2006; 552-589 0021-7824 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/276544 |
| identifier_str_mv |
Lederman, Claudia Beatriz; Wolanski, Noemi Irene; A two phase elliptic singular perturbation problem with a forcing term; Gauthier-Villars/Editions Elsevier; Journal de Mathematiques Pures Et Appliquees; 86; 6; 12-2006; 552-589 0021-7824 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021782406001280 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.matpur.2006.10.008 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Gauthier-Villars/Editions Elsevier |
| publisher.none.fl_str_mv |
Gauthier-Villars/Editions Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335625562226688 |
| score |
12.952241 |