Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception
- Autores
- Moreno, Hugo; Rueda Ayala, Victor; Ribeiro, Angela; Bengochea Guevara, Jose; López Correa, Juan Manuel; Peteinatos, Gerassimos; Valero, Constantino; Andújar, Dionisio
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A non-destructive measuring technique was applied to test major vine geometric traits on measurements collected by a contactless sensor. Three-dimensional optical sensors have evolved over the past decade, and these advancements may be useful in improving phenomics technologies for other crops, such as woody perennials. Red, green and blue-depth (RGB-D) cameras, namely Microsoft Kinect, have a significant influence on recent computer vision and robotics research. In this experiment an adaptable mobile platform was used for the acquisition of depth images for the non-destructive assessment of branch volume (pruning weight) and related to grape yield in vineyard crops. Vineyard yield prediction provides useful insights about the anticipated yield to the winegrower, guiding strategic decisions to accomplish optimal quantity and efficiency, and supporting the winegrower with decision-making. A Kinect v2 system on-board to an on-ground electric vehicle was capable of producing precise 3D point clouds of vine rows under six different management cropping systems. The generated models demonstrated strong consistency between 3D images and vine structures from the actual physical parameters when average values were calculated. Correlations of Kinect branch volume with pruning weight (dry biomass) resulted in high coefficients of determination (R2 = 0.80). In the study of vineyard yield correlations, the measured volume was found to have a good power law relationship (R2 = 0.87). However due to low capability of most depth cameras to properly build 3-D shapes of small details the results for each treatment when calculated separately were not consistent. Nonetheless, Kinect v2 has a tremendous potential as a 3D sensor in agricultural applications for proximal sensing operations, benefiting from its high frame rate, low price in comparison with other depth cameras, and high robustness.
Fil: Moreno, Hugo. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España
Fil: Rueda Ayala, Victor. Norwegian Institute of Bioeconomy Research; Noruega
Fil: Ribeiro, Angela. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España
Fil: Bengochea Guevara, Jose. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España
Fil: López Correa, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; España
Fil: Peteinatos, Gerassimos. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España
Fil: Valero, Constantino. Universidad Politécnica de Madrid; España
Fil: Andújar, Dionisio. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España - Materia
-
depth cameras
Kinect v2
3D reconstruction
vineyards - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256987
Ver los metadatos del registro completo
id |
CONICETDig_f4f190bf2ad95f72ec294413c4bac779 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256987 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth PerceptionMoreno, HugoRueda Ayala, VictorRibeiro, AngelaBengochea Guevara, JoseLópez Correa, Juan ManuelPeteinatos, GerassimosValero, ConstantinoAndújar, Dionisiodepth camerasKinect v23D reconstructionvineyardshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1A non-destructive measuring technique was applied to test major vine geometric traits on measurements collected by a contactless sensor. Three-dimensional optical sensors have evolved over the past decade, and these advancements may be useful in improving phenomics technologies for other crops, such as woody perennials. Red, green and blue-depth (RGB-D) cameras, namely Microsoft Kinect, have a significant influence on recent computer vision and robotics research. In this experiment an adaptable mobile platform was used for the acquisition of depth images for the non-destructive assessment of branch volume (pruning weight) and related to grape yield in vineyard crops. Vineyard yield prediction provides useful insights about the anticipated yield to the winegrower, guiding strategic decisions to accomplish optimal quantity and efficiency, and supporting the winegrower with decision-making. A Kinect v2 system on-board to an on-ground electric vehicle was capable of producing precise 3D point clouds of vine rows under six different management cropping systems. The generated models demonstrated strong consistency between 3D images and vine structures from the actual physical parameters when average values were calculated. Correlations of Kinect branch volume with pruning weight (dry biomass) resulted in high coefficients of determination (R2 = 0.80). In the study of vineyard yield correlations, the measured volume was found to have a good power law relationship (R2 = 0.87). However due to low capability of most depth cameras to properly build 3-D shapes of small details the results for each treatment when calculated separately were not consistent. Nonetheless, Kinect v2 has a tremendous potential as a 3D sensor in agricultural applications for proximal sensing operations, benefiting from its high frame rate, low price in comparison with other depth cameras, and high robustness.Fil: Moreno, Hugo. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; EspañaFil: Rueda Ayala, Victor. Norwegian Institute of Bioeconomy Research; NoruegaFil: Ribeiro, Angela. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; EspañaFil: Bengochea Guevara, Jose. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; EspañaFil: López Correa, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; EspañaFil: Peteinatos, Gerassimos. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; EspañaFil: Valero, Constantino. Universidad Politécnica de Madrid; EspañaFil: Andújar, Dionisio. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; EspañaMolecular Diversity Preservation International2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256987Moreno, Hugo; Rueda Ayala, Victor; Ribeiro, Angela; Bengochea Guevara, Jose; López Correa, Juan Manuel; et al.; Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception; Molecular Diversity Preservation International; Sensors; 20; 23; 12-2020; 1-141424-8220CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/20/23/6912info:eu-repo/semantics/altIdentifier/doi/10.3390/s20236912info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:56Zoai:ri.conicet.gov.ar:11336/256987instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:56.955CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception |
title |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception |
spellingShingle |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception Moreno, Hugo depth cameras Kinect v2 3D reconstruction vineyards |
title_short |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception |
title_full |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception |
title_fullStr |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception |
title_full_unstemmed |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception |
title_sort |
Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception |
dc.creator.none.fl_str_mv |
Moreno, Hugo Rueda Ayala, Victor Ribeiro, Angela Bengochea Guevara, Jose López Correa, Juan Manuel Peteinatos, Gerassimos Valero, Constantino Andújar, Dionisio |
author |
Moreno, Hugo |
author_facet |
Moreno, Hugo Rueda Ayala, Victor Ribeiro, Angela Bengochea Guevara, Jose López Correa, Juan Manuel Peteinatos, Gerassimos Valero, Constantino Andújar, Dionisio |
author_role |
author |
author2 |
Rueda Ayala, Victor Ribeiro, Angela Bengochea Guevara, Jose López Correa, Juan Manuel Peteinatos, Gerassimos Valero, Constantino Andújar, Dionisio |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
depth cameras Kinect v2 3D reconstruction vineyards |
topic |
depth cameras Kinect v2 3D reconstruction vineyards |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A non-destructive measuring technique was applied to test major vine geometric traits on measurements collected by a contactless sensor. Three-dimensional optical sensors have evolved over the past decade, and these advancements may be useful in improving phenomics technologies for other crops, such as woody perennials. Red, green and blue-depth (RGB-D) cameras, namely Microsoft Kinect, have a significant influence on recent computer vision and robotics research. In this experiment an adaptable mobile platform was used for the acquisition of depth images for the non-destructive assessment of branch volume (pruning weight) and related to grape yield in vineyard crops. Vineyard yield prediction provides useful insights about the anticipated yield to the winegrower, guiding strategic decisions to accomplish optimal quantity and efficiency, and supporting the winegrower with decision-making. A Kinect v2 system on-board to an on-ground electric vehicle was capable of producing precise 3D point clouds of vine rows under six different management cropping systems. The generated models demonstrated strong consistency between 3D images and vine structures from the actual physical parameters when average values were calculated. Correlations of Kinect branch volume with pruning weight (dry biomass) resulted in high coefficients of determination (R2 = 0.80). In the study of vineyard yield correlations, the measured volume was found to have a good power law relationship (R2 = 0.87). However due to low capability of most depth cameras to properly build 3-D shapes of small details the results for each treatment when calculated separately were not consistent. Nonetheless, Kinect v2 has a tremendous potential as a 3D sensor in agricultural applications for proximal sensing operations, benefiting from its high frame rate, low price in comparison with other depth cameras, and high robustness. Fil: Moreno, Hugo. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España Fil: Rueda Ayala, Victor. Norwegian Institute of Bioeconomy Research; Noruega Fil: Ribeiro, Angela. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España Fil: Bengochea Guevara, Jose. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España Fil: López Correa, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; España Fil: Peteinatos, Gerassimos. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España Fil: Valero, Constantino. Universidad Politécnica de Madrid; España Fil: Andújar, Dionisio. Consejo Superior de Investigaciones Científicas; España. Universidad Politécnica de Madrid; España |
description |
A non-destructive measuring technique was applied to test major vine geometric traits on measurements collected by a contactless sensor. Three-dimensional optical sensors have evolved over the past decade, and these advancements may be useful in improving phenomics technologies for other crops, such as woody perennials. Red, green and blue-depth (RGB-D) cameras, namely Microsoft Kinect, have a significant influence on recent computer vision and robotics research. In this experiment an adaptable mobile platform was used for the acquisition of depth images for the non-destructive assessment of branch volume (pruning weight) and related to grape yield in vineyard crops. Vineyard yield prediction provides useful insights about the anticipated yield to the winegrower, guiding strategic decisions to accomplish optimal quantity and efficiency, and supporting the winegrower with decision-making. A Kinect v2 system on-board to an on-ground electric vehicle was capable of producing precise 3D point clouds of vine rows under six different management cropping systems. The generated models demonstrated strong consistency between 3D images and vine structures from the actual physical parameters when average values were calculated. Correlations of Kinect branch volume with pruning weight (dry biomass) resulted in high coefficients of determination (R2 = 0.80). In the study of vineyard yield correlations, the measured volume was found to have a good power law relationship (R2 = 0.87). However due to low capability of most depth cameras to properly build 3-D shapes of small details the results for each treatment when calculated separately were not consistent. Nonetheless, Kinect v2 has a tremendous potential as a 3D sensor in agricultural applications for proximal sensing operations, benefiting from its high frame rate, low price in comparison with other depth cameras, and high robustness. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256987 Moreno, Hugo; Rueda Ayala, Victor; Ribeiro, Angela; Bengochea Guevara, Jose; López Correa, Juan Manuel; et al.; Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception; Molecular Diversity Preservation International; Sensors; 20; 23; 12-2020; 1-14 1424-8220 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/256987 |
identifier_str_mv |
Moreno, Hugo; Rueda Ayala, Victor; Ribeiro, Angela; Bengochea Guevara, Jose; López Correa, Juan Manuel; et al.; Evaluation of Vineyard Cropping Systems Using On-Board RGB-Depth Perception; Molecular Diversity Preservation International; Sensors; 20; 23; 12-2020; 1-14 1424-8220 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/20/23/6912 info:eu-repo/semantics/altIdentifier/doi/10.3390/s20236912 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613295071297536 |
score |
13.070432 |