Hydrologic regulation of plant rooting depth

Autores
Fan, Ying; Miguez Macho, Gonzalo; Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.; Otero Casal, Carlos
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change.
Fil: Fan, Ying. Rutgers University; Estados Unidos
Fil: Miguez Macho, Gonzalo. Universidad de Santiago de Compostela; España
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina
Fil: Jackson, Robert B.. University of Stanford; Estados Unidos
Fil: Otero Casal, Carlos. Universidad de Santiago de Compostela; España
Materia
Global Change Biology
Infiltration Depth
Plant Rooting Depth
Soil Hydrology
Water Table Depth
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/65973

id CONICETDig_d4b6e924690457761f26d0640eff6b65
oai_identifier_str oai:ri.conicet.gov.ar:11336/65973
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hydrologic regulation of plant rooting depthFan, YingMiguez Macho, GonzaloJobbagy Gampel, Esteban GabrielJackson, Robert B.Otero Casal, CarlosGlobal Change BiologyInfiltration DepthPlant Rooting DepthSoil HydrologyWater Table Depthhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change.Fil: Fan, Ying. Rutgers University; Estados UnidosFil: Miguez Macho, Gonzalo. Universidad de Santiago de Compostela; EspañaFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; ArgentinaFil: Jackson, Robert B.. University of Stanford; Estados UnidosFil: Otero Casal, Carlos. Universidad de Santiago de Compostela; EspañaNational Academy of Sciences2017-10-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/65973Fan, Ying; Miguez Macho, Gonzalo; Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.; Otero Casal, Carlos; Hydrologic regulation of plant rooting depth; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 114; 40; 3-10-2017; 10572-105770027-8424CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1712381114info:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/content/114/40/10572info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:30Zoai:ri.conicet.gov.ar:11336/65973instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:30.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hydrologic regulation of plant rooting depth
title Hydrologic regulation of plant rooting depth
spellingShingle Hydrologic regulation of plant rooting depth
Fan, Ying
Global Change Biology
Infiltration Depth
Plant Rooting Depth
Soil Hydrology
Water Table Depth
title_short Hydrologic regulation of plant rooting depth
title_full Hydrologic regulation of plant rooting depth
title_fullStr Hydrologic regulation of plant rooting depth
title_full_unstemmed Hydrologic regulation of plant rooting depth
title_sort Hydrologic regulation of plant rooting depth
dc.creator.none.fl_str_mv Fan, Ying
Miguez Macho, Gonzalo
Jobbagy Gampel, Esteban Gabriel
Jackson, Robert B.
Otero Casal, Carlos
author Fan, Ying
author_facet Fan, Ying
Miguez Macho, Gonzalo
Jobbagy Gampel, Esteban Gabriel
Jackson, Robert B.
Otero Casal, Carlos
author_role author
author2 Miguez Macho, Gonzalo
Jobbagy Gampel, Esteban Gabriel
Jackson, Robert B.
Otero Casal, Carlos
author2_role author
author
author
author
dc.subject.none.fl_str_mv Global Change Biology
Infiltration Depth
Plant Rooting Depth
Soil Hydrology
Water Table Depth
topic Global Change Biology
Infiltration Depth
Plant Rooting Depth
Soil Hydrology
Water Table Depth
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change.
Fil: Fan, Ying. Rutgers University; Estados Unidos
Fil: Miguez Macho, Gonzalo. Universidad de Santiago de Compostela; España
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina
Fil: Jackson, Robert B.. University of Stanford; Estados Unidos
Fil: Otero Casal, Carlos. Universidad de Santiago de Compostela; España
description Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant–water feedback pathway that may be critical to understanding plant-mediated global change.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/65973
Fan, Ying; Miguez Macho, Gonzalo; Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.; Otero Casal, Carlos; Hydrologic regulation of plant rooting depth; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 114; 40; 3-10-2017; 10572-10577
0027-8424
CONICET Digital
CONICET
url http://hdl.handle.net/11336/65973
identifier_str_mv Fan, Ying; Miguez Macho, Gonzalo; Jobbagy Gampel, Esteban Gabriel; Jackson, Robert B.; Otero Casal, Carlos; Hydrologic regulation of plant rooting depth; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 114; 40; 3-10-2017; 10572-10577
0027-8424
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.1712381114
info:eu-repo/semantics/altIdentifier/url/http://www.pnas.org/content/114/40/10572
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv National Academy of Sciences
publisher.none.fl_str_mv National Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613250073755648
score 13.070432