FitDepth: fast and lite 16-bit depth image compression algorithm

Autores
D'amato, Juan Pablo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This article presents a fast parallel lossless technique and a lossy image compression technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in robotics and other areas where several depth cameras are used. Since many of these algorithms need to be run in low-profile hardware, as embedded systems, they should be very fast and customizable. The proposal is based on the consideration of depth images as surfaces, so the idea is to split the image into a set of polynomial functions that each describes a part of the surface. The developed algorithm herein proposed can achieve a similar—or better—compression rate and especially higher speed rates than the existing techniques. It also has the potential of being fully parallelizable and to run on several cores. This feature, compared to other approaches, makes it useful for handling and streaming multiple cameras simultaneously. The algorithm is assessed in different situations and hardware. Its implementation is rather simple and is carried out with LIDAR captured images. Therefore, this work is accompanied by an open implementation in C++.
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Materia
DEPTH IMAGE
FAST COMPRESSION
PARALLEL IMPLEMENTATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/224970

id CONICETDig_cc1703cc8474af0dd7ca73b6b561c0ba
oai_identifier_str oai:ri.conicet.gov.ar:11336/224970
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling FitDepth: fast and lite 16-bit depth image compression algorithmD'amato, Juan PabloDEPTH IMAGEFAST COMPRESSIONPARALLEL IMPLEMENTATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This article presents a fast parallel lossless technique and a lossy image compression technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in robotics and other areas where several depth cameras are used. Since many of these algorithms need to be run in low-profile hardware, as embedded systems, they should be very fast and customizable. The proposal is based on the consideration of depth images as surfaces, so the idea is to split the image into a set of polynomial functions that each describes a part of the surface. The developed algorithm herein proposed can achieve a similar—or better—compression rate and especially higher speed rates than the existing techniques. It also has the potential of being fully parallelizable and to run on several cores. This feature, compared to other approaches, makes it useful for handling and streaming multiple cameras simultaneously. The algorithm is assessed in different situations and hardware. Its implementation is rather simple and is carried out with LIDAR captured images. Therefore, this work is accompanied by an open implementation in C++.Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaSpringer2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224970D'amato, Juan Pablo; FitDepth: fast and lite 16-bit depth image compression algorithm; Springer; Journal on Image and Video Processing; 2023; 1; 4-2023; 1-171687-5281CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-023-00606-zinfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13640-023-00606-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:45Zoai:ri.conicet.gov.ar:11336/224970instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:45.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv FitDepth: fast and lite 16-bit depth image compression algorithm
title FitDepth: fast and lite 16-bit depth image compression algorithm
spellingShingle FitDepth: fast and lite 16-bit depth image compression algorithm
D'amato, Juan Pablo
DEPTH IMAGE
FAST COMPRESSION
PARALLEL IMPLEMENTATION
title_short FitDepth: fast and lite 16-bit depth image compression algorithm
title_full FitDepth: fast and lite 16-bit depth image compression algorithm
title_fullStr FitDepth: fast and lite 16-bit depth image compression algorithm
title_full_unstemmed FitDepth: fast and lite 16-bit depth image compression algorithm
title_sort FitDepth: fast and lite 16-bit depth image compression algorithm
dc.creator.none.fl_str_mv D'amato, Juan Pablo
author D'amato, Juan Pablo
author_facet D'amato, Juan Pablo
author_role author
dc.subject.none.fl_str_mv DEPTH IMAGE
FAST COMPRESSION
PARALLEL IMPLEMENTATION
topic DEPTH IMAGE
FAST COMPRESSION
PARALLEL IMPLEMENTATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This article presents a fast parallel lossless technique and a lossy image compression technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in robotics and other areas where several depth cameras are used. Since many of these algorithms need to be run in low-profile hardware, as embedded systems, they should be very fast and customizable. The proposal is based on the consideration of depth images as surfaces, so the idea is to split the image into a set of polynomial functions that each describes a part of the surface. The developed algorithm herein proposed can achieve a similar—or better—compression rate and especially higher speed rates than the existing techniques. It also has the potential of being fully parallelizable and to run on several cores. This feature, compared to other approaches, makes it useful for handling and streaming multiple cameras simultaneously. The algorithm is assessed in different situations and hardware. Its implementation is rather simple and is carried out with LIDAR captured images. Therefore, this work is accompanied by an open implementation in C++.
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
description This article presents a fast parallel lossless technique and a lossy image compression technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in robotics and other areas where several depth cameras are used. Since many of these algorithms need to be run in low-profile hardware, as embedded systems, they should be very fast and customizable. The proposal is based on the consideration of depth images as surfaces, so the idea is to split the image into a set of polynomial functions that each describes a part of the surface. The developed algorithm herein proposed can achieve a similar—or better—compression rate and especially higher speed rates than the existing techniques. It also has the potential of being fully parallelizable and to run on several cores. This feature, compared to other approaches, makes it useful for handling and streaming multiple cameras simultaneously. The algorithm is assessed in different situations and hardware. Its implementation is rather simple and is carried out with LIDAR captured images. Therefore, this work is accompanied by an open implementation in C++.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/224970
D'amato, Juan Pablo; FitDepth: fast and lite 16-bit depth image compression algorithm; Springer; Journal on Image and Video Processing; 2023; 1; 4-2023; 1-17
1687-5281
CONICET Digital
CONICET
url http://hdl.handle.net/11336/224970
identifier_str_mv D'amato, Juan Pablo; FitDepth: fast and lite 16-bit depth image compression algorithm; Springer; Journal on Image and Video Processing; 2023; 1; 4-2023; 1-17
1687-5281
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-023-00606-z
info:eu-repo/semantics/altIdentifier/doi/10.1186/s13640-023-00606-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614510037434368
score 13.070432