FitDepth: fast and lite 16-bit depth image compression algorithm
- Autores
- D'amato, Juan Pablo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article presents a fast parallel lossless technique and a lossy image compression technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in robotics and other areas where several depth cameras are used. Since many of these algorithms need to be run in low-profile hardware, as embedded systems, they should be very fast and customizable. The proposal is based on the consideration of depth images as surfaces, so the idea is to split the image into a set of polynomial functions that each describes a part of the surface. The developed algorithm herein proposed can achieve a similar—or better—compression rate and especially higher speed rates than the existing techniques. It also has the potential of being fully parallelizable and to run on several cores. This feature, compared to other approaches, makes it useful for handling and streaming multiple cameras simultaneously. The algorithm is assessed in different situations and hardware. Its implementation is rather simple and is carried out with LIDAR captured images. Therefore, this work is accompanied by an open implementation in C++.
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina - Materia
-
DEPTH IMAGE
FAST COMPRESSION
PARALLEL IMPLEMENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/224970
Ver los metadatos del registro completo
id |
CONICETDig_cc1703cc8474af0dd7ca73b6b561c0ba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/224970 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
FitDepth: fast and lite 16-bit depth image compression algorithmD'amato, Juan PabloDEPTH IMAGEFAST COMPRESSIONPARALLEL IMPLEMENTATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This article presents a fast parallel lossless technique and a lossy image compression technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in robotics and other areas where several depth cameras are used. Since many of these algorithms need to be run in low-profile hardware, as embedded systems, they should be very fast and customizable. The proposal is based on the consideration of depth images as surfaces, so the idea is to split the image into a set of polynomial functions that each describes a part of the surface. The developed algorithm herein proposed can achieve a similar—or better—compression rate and especially higher speed rates than the existing techniques. It also has the potential of being fully parallelizable and to run on several cores. This feature, compared to other approaches, makes it useful for handling and streaming multiple cameras simultaneously. The algorithm is assessed in different situations and hardware. Its implementation is rather simple and is carried out with LIDAR captured images. Therefore, this work is accompanied by an open implementation in C++.Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaSpringer2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/224970D'amato, Juan Pablo; FitDepth: fast and lite 16-bit depth image compression algorithm; Springer; Journal on Image and Video Processing; 2023; 1; 4-2023; 1-171687-5281CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-023-00606-zinfo:eu-repo/semantics/altIdentifier/doi/10.1186/s13640-023-00606-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:45Zoai:ri.conicet.gov.ar:11336/224970instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:45.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
FitDepth: fast and lite 16-bit depth image compression algorithm |
title |
FitDepth: fast and lite 16-bit depth image compression algorithm |
spellingShingle |
FitDepth: fast and lite 16-bit depth image compression algorithm D'amato, Juan Pablo DEPTH IMAGE FAST COMPRESSION PARALLEL IMPLEMENTATION |
title_short |
FitDepth: fast and lite 16-bit depth image compression algorithm |
title_full |
FitDepth: fast and lite 16-bit depth image compression algorithm |
title_fullStr |
FitDepth: fast and lite 16-bit depth image compression algorithm |
title_full_unstemmed |
FitDepth: fast and lite 16-bit depth image compression algorithm |
title_sort |
FitDepth: fast and lite 16-bit depth image compression algorithm |
dc.creator.none.fl_str_mv |
D'amato, Juan Pablo |
author |
D'amato, Juan Pablo |
author_facet |
D'amato, Juan Pablo |
author_role |
author |
dc.subject.none.fl_str_mv |
DEPTH IMAGE FAST COMPRESSION PARALLEL IMPLEMENTATION |
topic |
DEPTH IMAGE FAST COMPRESSION PARALLEL IMPLEMENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This article presents a fast parallel lossless technique and a lossy image compression technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in robotics and other areas where several depth cameras are used. Since many of these algorithms need to be run in low-profile hardware, as embedded systems, they should be very fast and customizable. The proposal is based on the consideration of depth images as surfaces, so the idea is to split the image into a set of polynomial functions that each describes a part of the surface. The developed algorithm herein proposed can achieve a similar—or better—compression rate and especially higher speed rates than the existing techniques. It also has the potential of being fully parallelizable and to run on several cores. This feature, compared to other approaches, makes it useful for handling and streaming multiple cameras simultaneously. The algorithm is assessed in different situations and hardware. Its implementation is rather simple and is carried out with LIDAR captured images. Therefore, this work is accompanied by an open implementation in C++. Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina |
description |
This article presents a fast parallel lossless technique and a lossy image compression technique for 16-bit single-channel images. Nowadays, such techniques are “a must” in robotics and other areas where several depth cameras are used. Since many of these algorithms need to be run in low-profile hardware, as embedded systems, they should be very fast and customizable. The proposal is based on the consideration of depth images as surfaces, so the idea is to split the image into a set of polynomial functions that each describes a part of the surface. The developed algorithm herein proposed can achieve a similar—or better—compression rate and especially higher speed rates than the existing techniques. It also has the potential of being fully parallelizable and to run on several cores. This feature, compared to other approaches, makes it useful for handling and streaming multiple cameras simultaneously. The algorithm is assessed in different situations and hardware. Its implementation is rather simple and is carried out with LIDAR captured images. Therefore, this work is accompanied by an open implementation in C++. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/224970 D'amato, Juan Pablo; FitDepth: fast and lite 16-bit depth image compression algorithm; Springer; Journal on Image and Video Processing; 2023; 1; 4-2023; 1-17 1687-5281 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/224970 |
identifier_str_mv |
D'amato, Juan Pablo; FitDepth: fast and lite 16-bit depth image compression algorithm; Springer; Journal on Image and Video Processing; 2023; 1; 4-2023; 1-17 1687-5281 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-023-00606-z info:eu-repo/semantics/altIdentifier/doi/10.1186/s13640-023-00606-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614510037434368 |
score |
13.070432 |