Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network

Autores
Cafaro, Diego Carlos; Grossmann, Ignacio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The long-term planning of the shale gas supply chain is a relevant problem that has not been addressed before in the literature. This article presents a mixed-integer nonlinear programming (MINLP) model to optimally determine the number of wells to drill at every location, the size of gas processing plants, the section and length of pipelines for gathering raw gas and delivering processed gas and by-products, the power of gas compressors, and the amount of freshwater required from reservoirs for drilling and hydraulic fracturing so as to maximize the net present value of the project. Because the proposed model is a large-scale nonconvex MINLP, we develop a decomposition approach based on successively refining a piecewise linear approximation of the objective function. Results on realistic instances show the importance of heavier hydrocarbons to the economics of the project, as well as the optimal usage of the infrastructure by properly planning the drilling strategy.
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Materia
Shale Gas
Supply Chain
Strategic Plan
Minlp Approach
Solution Algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9337

id CONICETDig_95937e4e04dc8183932c183bee85a439
oai_identifier_str oai:ri.conicet.gov.ar:11336/9337
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Strategic Planning, Design , and Development of the Shale Gas Supply Chain NetworkCafaro, Diego CarlosGrossmann, IgnacioShale GasSupply ChainStrategic PlanMinlp ApproachSolution Algorithmhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The long-term planning of the shale gas supply chain is a relevant problem that has not been addressed before in the literature. This article presents a mixed-integer nonlinear programming (MINLP) model to optimally determine the number of wells to drill at every location, the size of gas processing plants, the section and length of pipelines for gathering raw gas and delivering processed gas and by-products, the power of gas compressors, and the amount of freshwater required from reservoirs for drilling and hydraulic fracturing so as to maximize the net present value of the project. Because the proposed model is a large-scale nonconvex MINLP, we develop a decomposition approach based on successively refining a piecewise linear approximation of the objective function. Results on realistic instances show the importance of heavier hydrocarbons to the economics of the project, as well as the optimal usage of the infrastructure by properly planning the drilling strategy.Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosWiley2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9337Cafaro, Diego Carlos; Grossmann, Ignacio; Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network; Wiley; Aiche Journal; 60; 6; 6-2014; 2122-21420001-1541enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/aic.14405/abstractinfo:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1002/aic.14405info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:43Zoai:ri.conicet.gov.ar:11336/9337instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:43.402CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network
title Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network
spellingShingle Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network
Cafaro, Diego Carlos
Shale Gas
Supply Chain
Strategic Plan
Minlp Approach
Solution Algorithm
title_short Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network
title_full Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network
title_fullStr Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network
title_full_unstemmed Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network
title_sort Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network
dc.creator.none.fl_str_mv Cafaro, Diego Carlos
Grossmann, Ignacio
author Cafaro, Diego Carlos
author_facet Cafaro, Diego Carlos
Grossmann, Ignacio
author_role author
author2 Grossmann, Ignacio
author2_role author
dc.subject.none.fl_str_mv Shale Gas
Supply Chain
Strategic Plan
Minlp Approach
Solution Algorithm
topic Shale Gas
Supply Chain
Strategic Plan
Minlp Approach
Solution Algorithm
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The long-term planning of the shale gas supply chain is a relevant problem that has not been addressed before in the literature. This article presents a mixed-integer nonlinear programming (MINLP) model to optimally determine the number of wells to drill at every location, the size of gas processing plants, the section and length of pipelines for gathering raw gas and delivering processed gas and by-products, the power of gas compressors, and the amount of freshwater required from reservoirs for drilling and hydraulic fracturing so as to maximize the net present value of the project. Because the proposed model is a large-scale nonconvex MINLP, we develop a decomposition approach based on successively refining a piecewise linear approximation of the objective function. Results on realistic instances show the importance of heavier hydrocarbons to the economics of the project, as well as the optimal usage of the infrastructure by properly planning the drilling strategy.
Fil: Cafaro, Diego Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Grossmann, Ignacio. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
description The long-term planning of the shale gas supply chain is a relevant problem that has not been addressed before in the literature. This article presents a mixed-integer nonlinear programming (MINLP) model to optimally determine the number of wells to drill at every location, the size of gas processing plants, the section and length of pipelines for gathering raw gas and delivering processed gas and by-products, the power of gas compressors, and the amount of freshwater required from reservoirs for drilling and hydraulic fracturing so as to maximize the net present value of the project. Because the proposed model is a large-scale nonconvex MINLP, we develop a decomposition approach based on successively refining a piecewise linear approximation of the objective function. Results on realistic instances show the importance of heavier hydrocarbons to the economics of the project, as well as the optimal usage of the infrastructure by properly planning the drilling strategy.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9337
Cafaro, Diego Carlos; Grossmann, Ignacio; Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network; Wiley; Aiche Journal; 60; 6; 6-2014; 2122-2142
0001-1541
url http://hdl.handle.net/11336/9337
identifier_str_mv Cafaro, Diego Carlos; Grossmann, Ignacio; Strategic Planning, Design , and Development of the Shale Gas Supply Chain Network; Wiley; Aiche Journal; 60; 6; 6-2014; 2122-2142
0001-1541
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/aic.14405/abstract
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1002/aic.14405
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269049130582016
score 13.13397