Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene

Autores
Nikel, Pablo Ivan; de Lorenzo, Víctor
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pseudomonas putida KT2440, a microbial cell factory of reference for industrial whole-cell biocatalysis, is unable to support biochemical reactions that occur under anoxic conditions, limiting its utility for a large number of relevant biotransformations. Unlike (facultative) anaerobes, P. putida resorts to NADH oxidation via an oxic respiratory chain and completely lacks a true fermentation metabolism. Therefore, it cannot achieve the correct balances of energy and redox couples (i.e., ATP/ADP and NADH/NAD+) that are required to sustain an O2-free lifestyle. To overcome this state of affairs, the acetate kinase (ackA) gene of the facultative anaerobe Escherichia coli and the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) genes of the aerotolerant Zymomonas mobilis were knocked-in to a wild-type P. putida strain. Biochemical and genetic assays showed that conditional expression of the entire enzyme set allowed the engineered bacteria to adopt an anoxic regime that maintained considerable metabolic activity. The resulting strain was exploited as a host for the heterologous expression of a 1,3-dichloroprop-1-ene degradation pathway recruited from Pseudomonas pavonaceae 170, enabling the recombinants to degrade this recalcitrant chlorinated compound anoxically. These results underscore the value of P. putida as a versatile agent for biotransformations able to function at progressively lower redox statuses.
Fil: Nikel, Pablo Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: de Lorenzo, Víctor. Consejo Superior de Investigaciones Científicas. Centro Nacional de Biotecnología; España
Materia
Pseudomonas Putida
Limited Oxygen Supply
Redox And Energy Balance
Biocatalysis
Organochloride
Biodegradation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23907

id CONICETDig_f4b985a3b0cbb3e22bf953ce8a80a3b6
oai_identifier_str oai:ri.conicet.gov.ar:11336/23907
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-eneNikel, Pablo Ivande Lorenzo, VíctorPseudomonas PutidaLimited Oxygen SupplyRedox And Energy BalanceBiocatalysisOrganochlorideBiodegradationhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Pseudomonas putida KT2440, a microbial cell factory of reference for industrial whole-cell biocatalysis, is unable to support biochemical reactions that occur under anoxic conditions, limiting its utility for a large number of relevant biotransformations. Unlike (facultative) anaerobes, P. putida resorts to NADH oxidation via an oxic respiratory chain and completely lacks a true fermentation metabolism. Therefore, it cannot achieve the correct balances of energy and redox couples (i.e., ATP/ADP and NADH/NAD+) that are required to sustain an O2-free lifestyle. To overcome this state of affairs, the acetate kinase (ackA) gene of the facultative anaerobe Escherichia coli and the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) genes of the aerotolerant Zymomonas mobilis were knocked-in to a wild-type P. putida strain. Biochemical and genetic assays showed that conditional expression of the entire enzyme set allowed the engineered bacteria to adopt an anoxic regime that maintained considerable metabolic activity. The resulting strain was exploited as a host for the heterologous expression of a 1,3-dichloroprop-1-ene degradation pathway recruited from Pseudomonas pavonaceae 170, enabling the recombinants to degrade this recalcitrant chlorinated compound anoxically. These results underscore the value of P. putida as a versatile agent for biotransformations able to function at progressively lower redox statuses.Fil: Nikel, Pablo Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: de Lorenzo, Víctor. Consejo Superior de Investigaciones Científicas. Centro Nacional de Biotecnología; EspañaAcademic Press Inc Elsevier Science2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23907Nikel, Pablo Ivan; de Lorenzo, Víctor; Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene; Academic Press Inc Elsevier Science; Metabolic Engineering; 15; 1-2013; 98-1121096-71761096-7184CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S1096717612001127info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ymben.2012.09.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:19Zoai:ri.conicet.gov.ar:11336/23907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:19.575CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
title Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
spellingShingle Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
Nikel, Pablo Ivan
Pseudomonas Putida
Limited Oxygen Supply
Redox And Energy Balance
Biocatalysis
Organochloride
Biodegradation
title_short Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
title_full Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
title_fullStr Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
title_full_unstemmed Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
title_sort Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene
dc.creator.none.fl_str_mv Nikel, Pablo Ivan
de Lorenzo, Víctor
author Nikel, Pablo Ivan
author_facet Nikel, Pablo Ivan
de Lorenzo, Víctor
author_role author
author2 de Lorenzo, Víctor
author2_role author
dc.subject.none.fl_str_mv Pseudomonas Putida
Limited Oxygen Supply
Redox And Energy Balance
Biocatalysis
Organochloride
Biodegradation
topic Pseudomonas Putida
Limited Oxygen Supply
Redox And Energy Balance
Biocatalysis
Organochloride
Biodegradation
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Pseudomonas putida KT2440, a microbial cell factory of reference for industrial whole-cell biocatalysis, is unable to support biochemical reactions that occur under anoxic conditions, limiting its utility for a large number of relevant biotransformations. Unlike (facultative) anaerobes, P. putida resorts to NADH oxidation via an oxic respiratory chain and completely lacks a true fermentation metabolism. Therefore, it cannot achieve the correct balances of energy and redox couples (i.e., ATP/ADP and NADH/NAD+) that are required to sustain an O2-free lifestyle. To overcome this state of affairs, the acetate kinase (ackA) gene of the facultative anaerobe Escherichia coli and the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) genes of the aerotolerant Zymomonas mobilis were knocked-in to a wild-type P. putida strain. Biochemical and genetic assays showed that conditional expression of the entire enzyme set allowed the engineered bacteria to adopt an anoxic regime that maintained considerable metabolic activity. The resulting strain was exploited as a host for the heterologous expression of a 1,3-dichloroprop-1-ene degradation pathway recruited from Pseudomonas pavonaceae 170, enabling the recombinants to degrade this recalcitrant chlorinated compound anoxically. These results underscore the value of P. putida as a versatile agent for biotransformations able to function at progressively lower redox statuses.
Fil: Nikel, Pablo Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: de Lorenzo, Víctor. Consejo Superior de Investigaciones Científicas. Centro Nacional de Biotecnología; España
description Pseudomonas putida KT2440, a microbial cell factory of reference for industrial whole-cell biocatalysis, is unable to support biochemical reactions that occur under anoxic conditions, limiting its utility for a large number of relevant biotransformations. Unlike (facultative) anaerobes, P. putida resorts to NADH oxidation via an oxic respiratory chain and completely lacks a true fermentation metabolism. Therefore, it cannot achieve the correct balances of energy and redox couples (i.e., ATP/ADP and NADH/NAD+) that are required to sustain an O2-free lifestyle. To overcome this state of affairs, the acetate kinase (ackA) gene of the facultative anaerobe Escherichia coli and the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) genes of the aerotolerant Zymomonas mobilis were knocked-in to a wild-type P. putida strain. Biochemical and genetic assays showed that conditional expression of the entire enzyme set allowed the engineered bacteria to adopt an anoxic regime that maintained considerable metabolic activity. The resulting strain was exploited as a host for the heterologous expression of a 1,3-dichloroprop-1-ene degradation pathway recruited from Pseudomonas pavonaceae 170, enabling the recombinants to degrade this recalcitrant chlorinated compound anoxically. These results underscore the value of P. putida as a versatile agent for biotransformations able to function at progressively lower redox statuses.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23907
Nikel, Pablo Ivan; de Lorenzo, Víctor; Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene; Academic Press Inc Elsevier Science; Metabolic Engineering; 15; 1-2013; 98-112
1096-7176
1096-7184
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23907
identifier_str_mv Nikel, Pablo Ivan; de Lorenzo, Víctor; Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene; Academic Press Inc Elsevier Science; Metabolic Engineering; 15; 1-2013; 98-112
1096-7176
1096-7184
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S1096717612001127
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ymben.2012.09.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269689585074176
score 13.13397