Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors

Autores
Schmidt, Javier Alejandro; Longeaud, C.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
IIn this paper we present a complete theoretical analysis of the steady-state photocarrier grating (SSPG) method, starting from the generalized equations that describe charge transport and recombination under grating conditions. The analytical solution of these equations and the application of simplifying assumptions leads to a very simple formula relating the density of states sDOSd at the quasi-Fermi level for trapped electrons to the SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG experiment, illustrating the case when measurements are performed at different illumination intensities. We propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained from both methods are in very good agreement.
Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Longeaud, C.. Universités Paris VI et XI; Francia
Materia
Photoconductivity
Density of States
Semiconductors
Thin Films
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/26560

id CONICETDig_f3cdf3a73ad68b16eae4012c59a25375
oai_identifier_str oai:ri.conicet.gov.ar:11336/26560
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductorsSchmidt, Javier AlejandroLongeaud, C.PhotoconductivityDensity of StatesSemiconductorsThin Filmshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1IIn this paper we present a complete theoretical analysis of the steady-state photocarrier grating (SSPG) method, starting from the generalized equations that describe charge transport and recombination under grating conditions. The analytical solution of these equations and the application of simplifying assumptions leads to a very simple formula relating the density of states sDOSd at the quasi-Fermi level for trapped electrons to the SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG experiment, illustrating the case when measurements are performed at different illumination intensities. We propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained from both methods are in very good agreement.Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Longeaud, C.. Universités Paris VI et XI; FranciaAmerican Physical Society2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26560Schmidt, Javier Alejandro; Longeaud, C.; Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors; American Physical Society; Physical Review B; 71; 12; 12-2005; 1-13; 1252080163-1829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.71.125208info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.125208info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:34Zoai:ri.conicet.gov.ar:11336/26560instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:34.667CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
title Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
spellingShingle Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
Schmidt, Javier Alejandro
Photoconductivity
Density of States
Semiconductors
Thin Films
title_short Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
title_full Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
title_fullStr Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
title_full_unstemmed Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
title_sort Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
dc.creator.none.fl_str_mv Schmidt, Javier Alejandro
Longeaud, C.
author Schmidt, Javier Alejandro
author_facet Schmidt, Javier Alejandro
Longeaud, C.
author_role author
author2 Longeaud, C.
author2_role author
dc.subject.none.fl_str_mv Photoconductivity
Density of States
Semiconductors
Thin Films
topic Photoconductivity
Density of States
Semiconductors
Thin Films
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv IIn this paper we present a complete theoretical analysis of the steady-state photocarrier grating (SSPG) method, starting from the generalized equations that describe charge transport and recombination under grating conditions. The analytical solution of these equations and the application of simplifying assumptions leads to a very simple formula relating the density of states sDOSd at the quasi-Fermi level for trapped electrons to the SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG experiment, illustrating the case when measurements are performed at different illumination intensities. We propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained from both methods are in very good agreement.
Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Longeaud, C.. Universités Paris VI et XI; Francia
description IIn this paper we present a complete theoretical analysis of the steady-state photocarrier grating (SSPG) method, starting from the generalized equations that describe charge transport and recombination under grating conditions. The analytical solution of these equations and the application of simplifying assumptions leads to a very simple formula relating the density of states sDOSd at the quasi-Fermi level for trapped electrons to the SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG experiment, illustrating the case when measurements are performed at different illumination intensities. We propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained from both methods are in very good agreement.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/26560
Schmidt, Javier Alejandro; Longeaud, C.; Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors; American Physical Society; Physical Review B; 71; 12; 12-2005; 1-13; 125208
0163-1829
CONICET Digital
CONICET
url http://hdl.handle.net/11336/26560
identifier_str_mv Schmidt, Javier Alejandro; Longeaud, C.; Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors; American Physical Society; Physical Review B; 71; 12; 12-2005; 1-13; 125208
0163-1829
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.71.125208
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.125208
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613766541475840
score 13.070432