Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors
- Autores
- Schmidt, Javier Alejandro; Longeaud, C.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- IIn this paper we present a complete theoretical analysis of the steady-state photocarrier grating (SSPG) method, starting from the generalized equations that describe charge transport and recombination under grating conditions. The analytical solution of these equations and the application of simplifying assumptions leads to a very simple formula relating the density of states sDOSd at the quasi-Fermi level for trapped electrons to the SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG experiment, illustrating the case when measurements are performed at different illumination intensities. We propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained from both methods are in very good agreement.
Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Longeaud, C.. Universités Paris VI et XI; Francia - Materia
-
Photoconductivity
Density of States
Semiconductors
Thin Films - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26560
Ver los metadatos del registro completo
id |
CONICETDig_f3cdf3a73ad68b16eae4012c59a25375 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26560 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductorsSchmidt, Javier AlejandroLongeaud, C.PhotoconductivityDensity of StatesSemiconductorsThin Filmshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1IIn this paper we present a complete theoretical analysis of the steady-state photocarrier grating (SSPG) method, starting from the generalized equations that describe charge transport and recombination under grating conditions. The analytical solution of these equations and the application of simplifying assumptions leads to a very simple formula relating the density of states sDOSd at the quasi-Fermi level for trapped electrons to the SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG experiment, illustrating the case when measurements are performed at different illumination intensities. We propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained from both methods are in very good agreement.Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Longeaud, C.. Universités Paris VI et XI; FranciaAmerican Physical Society2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26560Schmidt, Javier Alejandro; Longeaud, C.; Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors; American Physical Society; Physical Review B; 71; 12; 12-2005; 1-13; 1252080163-1829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.71.125208info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.125208info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:34Zoai:ri.conicet.gov.ar:11336/26560instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:34.667CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors |
title |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors |
spellingShingle |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors Schmidt, Javier Alejandro Photoconductivity Density of States Semiconductors Thin Films |
title_short |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors |
title_full |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors |
title_fullStr |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors |
title_full_unstemmed |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors |
title_sort |
Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors |
dc.creator.none.fl_str_mv |
Schmidt, Javier Alejandro Longeaud, C. |
author |
Schmidt, Javier Alejandro |
author_facet |
Schmidt, Javier Alejandro Longeaud, C. |
author_role |
author |
author2 |
Longeaud, C. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Photoconductivity Density of States Semiconductors Thin Films |
topic |
Photoconductivity Density of States Semiconductors Thin Films |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
IIn this paper we present a complete theoretical analysis of the steady-state photocarrier grating (SSPG) method, starting from the generalized equations that describe charge transport and recombination under grating conditions. The analytical solution of these equations and the application of simplifying assumptions leads to a very simple formula relating the density of states sDOSd at the quasi-Fermi level for trapped electrons to the SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG experiment, illustrating the case when measurements are performed at different illumination intensities. We propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained from both methods are in very good agreement. Fil: Schmidt, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Longeaud, C.. Universités Paris VI et XI; Francia |
description |
IIn this paper we present a complete theoretical analysis of the steady-state photocarrier grating (SSPG) method, starting from the generalized equations that describe charge transport and recombination under grating conditions. The analytical solution of these equations and the application of simplifying assumptions leads to a very simple formula relating the density of states sDOSd at the quasi-Fermi level for trapped electrons to the SSPG signal at large grating periods. By means of numerical calculations reproducing the experimental SSPG curves we test our method for DOS determination. We examine previous theoretical descriptions of the SSPG experiment, illustrating the case when measurements are performed at different illumination intensities. We propose a procedure to estimate the minority-carriers mobility-lifetime product from SSPG curves, introducing a correction to the commonly applied formula. We illustrate the usefulness of our technique for determining the DOS in the gap of intrinsic semiconductors, and we underline its limitations when applied to hydrogenated amorphous silicon. We propose an experimental procedure that improves the accuracy of the SSPG-DOS reconstruction. Finally, we test experimentally this new method by comparing the DOS obtained from SSPG and modulated photocurrent measurements performed on the same samples. The experimental DOS obtained from both methods are in very good agreement. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26560 Schmidt, Javier Alejandro; Longeaud, C.; Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors; American Physical Society; Physical Review B; 71; 12; 12-2005; 1-13; 125208 0163-1829 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26560 |
identifier_str_mv |
Schmidt, Javier Alejandro; Longeaud, C.; Analysis of the steady-state photocarrier grating method for the determination of the density of states in semiconductors; American Physical Society; Physical Review B; 71; 12; 12-2005; 1-13; 125208 0163-1829 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.71.125208 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.125208 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613766541475840 |
score |
13.070432 |