Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets
- Autores
- Ziemer, Paulo G. P.; Bulant, Carlos Alberto; Orlando, José Ignacio; Maso Talou, Gonzalo D.; Mansilla Álvarez, Luis A.; Guedes Bezerra, Cristiano; Lemos, Pedro A.; García García, Héctor M.; Blanco, Pablo J.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Aims: Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the lumen boundary in IVUS datasets. Methods and results First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) convolutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquartile range, IQR) systematically increased from 0.896 (0.874–0.933) for MF1 to 0.925 (0.911–0.948) for MF11. The median (IQR) of the distance error was also reduced from 3.83 (2.94–4.98)% for MF1 to 3.02 (2.25–3.95)% for MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50–10.50)% for MF1 and 5.12 (2.15–9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN output. Conclusion: These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary in IVUS scans, reducing the burden of costly and time-consuming manual delineation.
Fil: Ziemer, Paulo G. P.. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Bulant, Carlos Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina
Fil: Maso Talou, Gonzalo D.. University of Auckland; Nueva Zelanda
Fil: Mansilla Álvarez, Luis A.. Laboratorio Nacional de Computacao Cientifica; Brasil
Fil: Guedes Bezerra, Cristiano. Universidade de Sao Paulo; Brasil
Fil: Lemos, Pedro A.. Universidade de Sao Paulo; Brasil
Fil: García García, Héctor M.. Georgetown University School of Medicine; Estados Unidos
Fil: Blanco, Pablo J.. Laboratorio Nacional de Computacao Cientifica; Brasil - Materia
-
IVUS
SEGMENTATION
GATING
NEURAL NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128682
Ver los metadatos del registro completo
id |
CONICETDig_e00f6ebc7364957a7dd60bfdacb80378 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128682 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasetsZiemer, Paulo G. P.Bulant, Carlos AlbertoOrlando, José IgnacioMaso Talou, Gonzalo D.Mansilla Álvarez, Luis A.Guedes Bezerra, CristianoLemos, Pedro A.García García, Héctor M.Blanco, Pablo J.IVUSSEGMENTATIONGATINGNEURAL NETWORKShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Aims: Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the lumen boundary in IVUS datasets. Methods and results First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) convolutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquartile range, IQR) systematically increased from 0.896 (0.874–0.933) for MF1 to 0.925 (0.911–0.948) for MF11. The median (IQR) of the distance error was also reduced from 3.83 (2.94–4.98)% for MF1 to 3.02 (2.25–3.95)% for MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50–10.50)% for MF1 and 5.12 (2.15–9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN output. Conclusion: These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary in IVUS scans, reducing the burden of costly and time-consuming manual delineation.Fil: Ziemer, Paulo G. P.. Laboratorio Nacional de Computacao Cientifica; BrasilFil: Bulant, Carlos Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; ArgentinaFil: Maso Talou, Gonzalo D.. University of Auckland; Nueva ZelandaFil: Mansilla Álvarez, Luis A.. Laboratorio Nacional de Computacao Cientifica; BrasilFil: Guedes Bezerra, Cristiano. Universidade de Sao Paulo; BrasilFil: Lemos, Pedro A.. Universidade de Sao Paulo; BrasilFil: García García, Héctor M.. Georgetown University School of Medicine; Estados UnidosFil: Blanco, Pablo J.. Laboratorio Nacional de Computacao Cientifica; BrasilOxford University Press2020-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128682Ziemer, Paulo G. P.; Bulant, Carlos Alberto; Orlando, José Ignacio; Maso Talou, Gonzalo D.; Mansilla Álvarez, Luis A.; et al.; Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets; Oxford University Press; European Heart Journal - Digital Health; 1; 1; 11-2020; 1-82634-3916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/ehjdh/advance-article/doi/10.1093/ehjdh/ztaa014/5998645info:eu-repo/semantics/altIdentifier/doi/10.1093/ehjdh/ztaa014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:21Zoai:ri.conicet.gov.ar:11336/128682instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:21.404CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets |
title |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets |
spellingShingle |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets Ziemer, Paulo G. P. IVUS SEGMENTATION GATING NEURAL NETWORKS |
title_short |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets |
title_full |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets |
title_fullStr |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets |
title_full_unstemmed |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets |
title_sort |
Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets |
dc.creator.none.fl_str_mv |
Ziemer, Paulo G. P. Bulant, Carlos Alberto Orlando, José Ignacio Maso Talou, Gonzalo D. Mansilla Álvarez, Luis A. Guedes Bezerra, Cristiano Lemos, Pedro A. García García, Héctor M. Blanco, Pablo J. |
author |
Ziemer, Paulo G. P. |
author_facet |
Ziemer, Paulo G. P. Bulant, Carlos Alberto Orlando, José Ignacio Maso Talou, Gonzalo D. Mansilla Álvarez, Luis A. Guedes Bezerra, Cristiano Lemos, Pedro A. García García, Héctor M. Blanco, Pablo J. |
author_role |
author |
author2 |
Bulant, Carlos Alberto Orlando, José Ignacio Maso Talou, Gonzalo D. Mansilla Álvarez, Luis A. Guedes Bezerra, Cristiano Lemos, Pedro A. García García, Héctor M. Blanco, Pablo J. |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
IVUS SEGMENTATION GATING NEURAL NETWORKS |
topic |
IVUS SEGMENTATION GATING NEURAL NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Aims: Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the lumen boundary in IVUS datasets. Methods and results First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) convolutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquartile range, IQR) systematically increased from 0.896 (0.874–0.933) for MF1 to 0.925 (0.911–0.948) for MF11. The median (IQR) of the distance error was also reduced from 3.83 (2.94–4.98)% for MF1 to 3.02 (2.25–3.95)% for MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50–10.50)% for MF1 and 5.12 (2.15–9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN output. Conclusion: These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary in IVUS scans, reducing the burden of costly and time-consuming manual delineation. Fil: Ziemer, Paulo G. P.. Laboratorio Nacional de Computacao Cientifica; Brasil Fil: Bulant, Carlos Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Orlando, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina Fil: Maso Talou, Gonzalo D.. University of Auckland; Nueva Zelanda Fil: Mansilla Álvarez, Luis A.. Laboratorio Nacional de Computacao Cientifica; Brasil Fil: Guedes Bezerra, Cristiano. Universidade de Sao Paulo; Brasil Fil: Lemos, Pedro A.. Universidade de Sao Paulo; Brasil Fil: García García, Héctor M.. Georgetown University School of Medicine; Estados Unidos Fil: Blanco, Pablo J.. Laboratorio Nacional de Computacao Cientifica; Brasil |
description |
Aims: Assessment of minimum lumen areas in intravascular ultrasound (IVUS) pullbacks is time-consuming and demands adequately trained personnel. In this work, we introduce a novel and fully automated pipeline to segment the lumen boundary in IVUS datasets. Methods and results First, an automated gating is applied to select end-diastolic frames and bypass saw-tooth artefacts. Second, within a machine learning (ML) environment, we automatically segment the lumen boundary using a multi-frame (MF) convolutional neural network (MFCNN). Finally, we use the theory of Gaussian processes (GPs) to regress the final lumen boundary. The dataset consisted of 85 IVUS pullbacks (52 patients). The dataset was partitioned at the pullback-level using 73 pullbacks for training (20 586 frames), 6 pullbacks for validation (1692 frames), and 6 for testing (1692 frames). The degree of overlapping, between the ground truth and ML contours, median (interquartile range, IQR) systematically increased from 0.896 (0.874–0.933) for MF1 to 0.925 (0.911–0.948) for MF11. The median (IQR) of the distance error was also reduced from 3.83 (2.94–4.98)% for MF1 to 3.02 (2.25–3.95)% for MF11-GP. The corresponding median (IQR) in the lumen area error remained between 5.49 (2.50–10.50)% for MF1 and 5.12 (2.15–9.00)% for MF11-GP. The dispersion in the relative distance and area errors consistently decreased as we increased the number of frames, and also when the GP regressor was coupled to the MFCNN output. Conclusion: These results demonstrate that the proposed ML approach is suitable to effectively segment the lumen boundary in IVUS scans, reducing the burden of costly and time-consuming manual delineation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128682 Ziemer, Paulo G. P.; Bulant, Carlos Alberto; Orlando, José Ignacio; Maso Talou, Gonzalo D.; Mansilla Álvarez, Luis A.; et al.; Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets; Oxford University Press; European Heart Journal - Digital Health; 1; 1; 11-2020; 1-8 2634-3916 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/128682 |
identifier_str_mv |
Ziemer, Paulo G. P.; Bulant, Carlos Alberto; Orlando, José Ignacio; Maso Talou, Gonzalo D.; Mansilla Álvarez, Luis A.; et al.; Automated lumen segmentation using multi-frame convolutional neural networks in Intravascular Ultrasound datasets; Oxford University Press; European Heart Journal - Digital Health; 1; 1; 11-2020; 1-8 2634-3916 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/ehjdh/advance-article/doi/10.1093/ehjdh/ztaa014/5998645 info:eu-repo/semantics/altIdentifier/doi/10.1093/ehjdh/ztaa014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269339524268032 |
score |
13.13397 |