Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem
- Autores
- Méndez Babey, Máximo; Frutos, Mariano; Miguel, Fabio Maximiliano; Aguasca Colomo, Ricardo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A common technique used to solve multi-objective optimization problems consists of first generating the set of all Pareto-optimal solutions and then ranking and/or choosing the most interesting solution for a human decision maker (DM). Sometimes this technique is referred to as generate first–choose later. In this context, this paper proposes a two-stage methodology: a first stage using a multi-objective evolutionary algorithm (MOEA) to generate an approximate Pareto-optimal front of non-dominated solutions and a second stage, which uses the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) devoted to rank the potential solutions to be proposed to the DM. The novelty of this paper lies in the fact that it is not necessary to know the ideal and nadir solutions of the problem in the TOPSIS method in order to determine the ranking of solutions. To show the utility of the proposed methodology, several original experiments and comparisons between different recognized MOEAs were carried out on a welded beam engineering design benchmark problem. The problem was solved with two and three objectives and it is characterized by a lack of knowledge about ideal and nadir values.
Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; España
Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
Fil: Miguel, Fabio Maximiliano. Universidad Nacional de Río Negro; Argentina
Fil: Aguasca Colomo, Ricardo. Universidad de Las Palmas de Gran Canaria; España - Materia
-
ENGINEERING DESIGN
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS
MULTIPLE CRITERIA DECISION-MAKING
OPTIMIZATION
PREFERENCES
TOPSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129472
Ver los metadatos del registro completo
id |
CONICETDig_ec45d912fc363393c62dd19928fc2e40 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129472 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problemMéndez Babey, MáximoFrutos, MarianoMiguel, Fabio MaximilianoAguasca Colomo, RicardoENGINEERING DESIGNMULTI-OBJECTIVE EVOLUTIONARY ALGORITHMSMULTIPLE CRITERIA DECISION-MAKINGOPTIMIZATIONPREFERENCESTOPSIShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2A common technique used to solve multi-objective optimization problems consists of first generating the set of all Pareto-optimal solutions and then ranking and/or choosing the most interesting solution for a human decision maker (DM). Sometimes this technique is referred to as generate first–choose later. In this context, this paper proposes a two-stage methodology: a first stage using a multi-objective evolutionary algorithm (MOEA) to generate an approximate Pareto-optimal front of non-dominated solutions and a second stage, which uses the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) devoted to rank the potential solutions to be proposed to the DM. The novelty of this paper lies in the fact that it is not necessary to know the ideal and nadir solutions of the problem in the TOPSIS method in order to determine the ranking of solutions. To show the utility of the proposed methodology, several original experiments and comparisons between different recognized MOEAs were carried out on a welded beam engineering design benchmark problem. The problem was solved with two and three objectives and it is characterized by a lack of knowledge about ideal and nadir values.Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; EspañaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Miguel, Fabio Maximiliano. Universidad Nacional de Río Negro; ArgentinaFil: Aguasca Colomo, Ricardo. Universidad de Las Palmas de Gran Canaria; EspañaMDPI2020-11-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129472Méndez Babey, Máximo; Frutos, Mariano; Miguel, Fabio Maximiliano; Aguasca Colomo, Ricardo; Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem; MDPI; Mathematics; 8; 11; 20-11-2020; 1-272227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/8/11/2072info:eu-repo/semantics/altIdentifier/doi//10.3390/math8112072info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:27Zoai:ri.conicet.gov.ar:11336/129472instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:27.321CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem |
title |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem |
spellingShingle |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem Méndez Babey, Máximo ENGINEERING DESIGN MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS MULTIPLE CRITERIA DECISION-MAKING OPTIMIZATION PREFERENCES TOPSIS |
title_short |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem |
title_full |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem |
title_fullStr |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem |
title_full_unstemmed |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem |
title_sort |
Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem |
dc.creator.none.fl_str_mv |
Méndez Babey, Máximo Frutos, Mariano Miguel, Fabio Maximiliano Aguasca Colomo, Ricardo |
author |
Méndez Babey, Máximo |
author_facet |
Méndez Babey, Máximo Frutos, Mariano Miguel, Fabio Maximiliano Aguasca Colomo, Ricardo |
author_role |
author |
author2 |
Frutos, Mariano Miguel, Fabio Maximiliano Aguasca Colomo, Ricardo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ENGINEERING DESIGN MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS MULTIPLE CRITERIA DECISION-MAKING OPTIMIZATION PREFERENCES TOPSIS |
topic |
ENGINEERING DESIGN MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS MULTIPLE CRITERIA DECISION-MAKING OPTIMIZATION PREFERENCES TOPSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A common technique used to solve multi-objective optimization problems consists of first generating the set of all Pareto-optimal solutions and then ranking and/or choosing the most interesting solution for a human decision maker (DM). Sometimes this technique is referred to as generate first–choose later. In this context, this paper proposes a two-stage methodology: a first stage using a multi-objective evolutionary algorithm (MOEA) to generate an approximate Pareto-optimal front of non-dominated solutions and a second stage, which uses the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) devoted to rank the potential solutions to be proposed to the DM. The novelty of this paper lies in the fact that it is not necessary to know the ideal and nadir solutions of the problem in the TOPSIS method in order to determine the ranking of solutions. To show the utility of the proposed methodology, several original experiments and comparisons between different recognized MOEAs were carried out on a welded beam engineering design benchmark problem. The problem was solved with two and three objectives and it is characterized by a lack of knowledge about ideal and nadir values. Fil: Méndez Babey, Máximo. Universidad de Las Palmas de Gran Canaria; España Fil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina Fil: Miguel, Fabio Maximiliano. Universidad Nacional de Río Negro; Argentina Fil: Aguasca Colomo, Ricardo. Universidad de Las Palmas de Gran Canaria; España |
description |
A common technique used to solve multi-objective optimization problems consists of first generating the set of all Pareto-optimal solutions and then ranking and/or choosing the most interesting solution for a human decision maker (DM). Sometimes this technique is referred to as generate first–choose later. In this context, this paper proposes a two-stage methodology: a first stage using a multi-objective evolutionary algorithm (MOEA) to generate an approximate Pareto-optimal front of non-dominated solutions and a second stage, which uses the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) devoted to rank the potential solutions to be proposed to the DM. The novelty of this paper lies in the fact that it is not necessary to know the ideal and nadir solutions of the problem in the TOPSIS method in order to determine the ranking of solutions. To show the utility of the proposed methodology, several original experiments and comparisons between different recognized MOEAs were carried out on a welded beam engineering design benchmark problem. The problem was solved with two and three objectives and it is characterized by a lack of knowledge about ideal and nadir values. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129472 Méndez Babey, Máximo; Frutos, Mariano; Miguel, Fabio Maximiliano; Aguasca Colomo, Ricardo; Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem; MDPI; Mathematics; 8; 11; 20-11-2020; 1-27 2227-7390 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129472 |
identifier_str_mv |
Méndez Babey, Máximo; Frutos, Mariano; Miguel, Fabio Maximiliano; Aguasca Colomo, Ricardo; Topsis decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem; MDPI; Mathematics; 8; 11; 20-11-2020; 1-27 2227-7390 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/8/11/2072 info:eu-repo/semantics/altIdentifier/doi//10.3390/math8112072 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613248153812992 |
score |
13.070432 |