Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry

Autores
Cecchini, Rocío Luján; Ponzoni, Ignacio; Carballido, Jessica Andrea
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The design of optimal sensor networks for an industrial process is a complex problem that requires the resolution of several tasks with a high level of expertise. The first of these subproblems consists in selecting an initial sensor network as the starting point for the instrumentation design. This particular task constitutes a combinatorial optimization problem, where several goals are prosecuted by the designer. Therefore, the initialization procedure can be defined as a multi-objective optimization problem. In this paper, the use of multi-objective evolutionary approaches to assist experts in the design of an initial sensor network is proposed and analyzed. The aim is to contrast the advantages and limitations of Pareto and non-Pareto techniques in the context of this industrial application. The algorithms consider objectives related to cost, reliability and level of information associated with a sensor network. The techniques were evaluated by means of a comparative analysis for a strongly non-linear mathematical model that represents an ammonia synthesis plant. Results have been contrasted in terms of the set coverage and spacing metrics. As a final conclusion, the non-Pareto strategy converged closer to the Pareto front than the Pareto-based algorithms. In contrast, the Pareto-based algorithms achieved better relative distance among solutions than the non-Pareto method. In all cases, the use of evolutionary computation is useful for the expert to take the final decision on the preferred initial sensor network.
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina
Fil: Ponzoni, Ignacio. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina
Materia
EVOLUTIONARY COMPUTATION
INTELLIGENT SENSOR NETWORK DESIGN
MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/149739

id CONICETDig_997bc7d5f1c93961c414ba7b30a0554e
oai_identifier_str oai:ri.conicet.gov.ar:11336/149739
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industryCecchini, Rocío LujánPonzoni, IgnacioCarballido, Jessica AndreaEVOLUTIONARY COMPUTATIONINTELLIGENT SENSOR NETWORK DESIGNMULTI-OBJECTIVE COMBINATORIAL OPTIMIZATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The design of optimal sensor networks for an industrial process is a complex problem that requires the resolution of several tasks with a high level of expertise. The first of these subproblems consists in selecting an initial sensor network as the starting point for the instrumentation design. This particular task constitutes a combinatorial optimization problem, where several goals are prosecuted by the designer. Therefore, the initialization procedure can be defined as a multi-objective optimization problem. In this paper, the use of multi-objective evolutionary approaches to assist experts in the design of an initial sensor network is proposed and analyzed. The aim is to contrast the advantages and limitations of Pareto and non-Pareto techniques in the context of this industrial application. The algorithms consider objectives related to cost, reliability and level of information associated with a sensor network. The techniques were evaluated by means of a comparative analysis for a strongly non-linear mathematical model that represents an ammonia synthesis plant. Results have been contrasted in terms of the set coverage and spacing metrics. As a final conclusion, the non-Pareto strategy converged closer to the Pareto front than the Pareto-based algorithms. In contrast, the Pareto-based algorithms achieved better relative distance among solutions than the non-Pareto method. In all cases, the use of evolutionary computation is useful for the expert to take the final decision on the preferred initial sensor network.Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; ArgentinaFil: Ponzoni, Ignacio. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; ArgentinaPergamon-Elsevier Science Ltd2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149739Cecchini, Rocío Luján; Ponzoni, Ignacio; Carballido, Jessica Andrea; Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 3; 2-2012; 2643-26490957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0957417411012504info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.08.119info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:09Zoai:ri.conicet.gov.ar:11336/149739instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:09.786CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry
title Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry
spellingShingle Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry
Cecchini, Rocío Luján
EVOLUTIONARY COMPUTATION
INTELLIGENT SENSOR NETWORK DESIGN
MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
title_short Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry
title_full Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry
title_fullStr Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry
title_full_unstemmed Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry
title_sort Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry
dc.creator.none.fl_str_mv Cecchini, Rocío Luján
Ponzoni, Ignacio
Carballido, Jessica Andrea
author Cecchini, Rocío Luján
author_facet Cecchini, Rocío Luján
Ponzoni, Ignacio
Carballido, Jessica Andrea
author_role author
author2 Ponzoni, Ignacio
Carballido, Jessica Andrea
author2_role author
author
dc.subject.none.fl_str_mv EVOLUTIONARY COMPUTATION
INTELLIGENT SENSOR NETWORK DESIGN
MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
topic EVOLUTIONARY COMPUTATION
INTELLIGENT SENSOR NETWORK DESIGN
MULTI-OBJECTIVE COMBINATORIAL OPTIMIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The design of optimal sensor networks for an industrial process is a complex problem that requires the resolution of several tasks with a high level of expertise. The first of these subproblems consists in selecting an initial sensor network as the starting point for the instrumentation design. This particular task constitutes a combinatorial optimization problem, where several goals are prosecuted by the designer. Therefore, the initialization procedure can be defined as a multi-objective optimization problem. In this paper, the use of multi-objective evolutionary approaches to assist experts in the design of an initial sensor network is proposed and analyzed. The aim is to contrast the advantages and limitations of Pareto and non-Pareto techniques in the context of this industrial application. The algorithms consider objectives related to cost, reliability and level of information associated with a sensor network. The techniques were evaluated by means of a comparative analysis for a strongly non-linear mathematical model that represents an ammonia synthesis plant. Results have been contrasted in terms of the set coverage and spacing metrics. As a final conclusion, the non-Pareto strategy converged closer to the Pareto front than the Pareto-based algorithms. In contrast, the Pareto-based algorithms achieved better relative distance among solutions than the non-Pareto method. In all cases, the use of evolutionary computation is useful for the expert to take the final decision on the preferred initial sensor network.
Fil: Cecchini, Rocío Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina
Fil: Ponzoni, Ignacio. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Carballido, Jessica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina
description The design of optimal sensor networks for an industrial process is a complex problem that requires the resolution of several tasks with a high level of expertise. The first of these subproblems consists in selecting an initial sensor network as the starting point for the instrumentation design. This particular task constitutes a combinatorial optimization problem, where several goals are prosecuted by the designer. Therefore, the initialization procedure can be defined as a multi-objective optimization problem. In this paper, the use of multi-objective evolutionary approaches to assist experts in the design of an initial sensor network is proposed and analyzed. The aim is to contrast the advantages and limitations of Pareto and non-Pareto techniques in the context of this industrial application. The algorithms consider objectives related to cost, reliability and level of information associated with a sensor network. The techniques were evaluated by means of a comparative analysis for a strongly non-linear mathematical model that represents an ammonia synthesis plant. Results have been contrasted in terms of the set coverage and spacing metrics. As a final conclusion, the non-Pareto strategy converged closer to the Pareto front than the Pareto-based algorithms. In contrast, the Pareto-based algorithms achieved better relative distance among solutions than the non-Pareto method. In all cases, the use of evolutionary computation is useful for the expert to take the final decision on the preferred initial sensor network.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/149739
Cecchini, Rocío Luján; Ponzoni, Ignacio; Carballido, Jessica Andrea; Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 3; 2-2012; 2643-2649
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/149739
identifier_str_mv Cecchini, Rocío Luján; Ponzoni, Ignacio; Carballido, Jessica Andrea; Multi-objective evolutionary approaches for intelligent design of sensor networks in the petrochemical industry; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 3; 2-2012; 2643-2649
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0957417411012504
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.08.119
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268906877616128
score 13.13397