A closed-form expression for computing the sensitivity in second-order bilinear calibration

Autores
Olivieri, Alejandro Cesar; Faber, Nicolaas (Klaas) M.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A general expression is derived for estimating the sensitivity of second-order bilinear calibration models, particularly parallel factor analysis (PARAFAC) and bilinear least-squares (BLLS), whether the second-order advantage is required or not. In the latter case, the sensitivity is correctly estimated either if the advantage is achieved by processing the unknown sample together with the calibration set (PARAFAC), or by post-calibration residual bilinearization (BLLS). The expression includes, as special cases, the sensitivity expressions already discussed by Messick, Kalivas and Lang (MKL) and by Ho, Christian and Davidson (HCD). The former one is the maximum achievable sensitivity in a given calibration situation, where all components are present in the calibration set of samples. The latter approach gives the lowest possible sensitivity, corresponding to only calibrating the analyte of interest, leaving the remaining components as uncalibrated constituents of the unknown sample. In intermediate situations, that is more than one calibrated analyte and presence of unexpected components in the unknown sample, only the present approach is able to provide a satisfactory sensitivity parameter, in close agreement with previously described Monte Carlo numerical simulations.
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Faber, Nicolaas (Klaas) M.. Chemometry Consultancy; Países Bajos
Materia
BILINEAR LEAST-SQUARES
NET ANALYTE SIGNAL
PARALLEL FACTOR ANALYSIS
SECOND-ORDER BILINEAR CALIBRATION
SENSITIVITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/135504

id CONICETDig_f2fb3652513668152d54c24b7e6df04b
oai_identifier_str oai:ri.conicet.gov.ar:11336/135504
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A closed-form expression for computing the sensitivity in second-order bilinear calibrationOlivieri, Alejandro CesarFaber, Nicolaas (Klaas) M.BILINEAR LEAST-SQUARESNET ANALYTE SIGNALPARALLEL FACTOR ANALYSISSECOND-ORDER BILINEAR CALIBRATIONSENSITIVITYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A general expression is derived for estimating the sensitivity of second-order bilinear calibration models, particularly parallel factor analysis (PARAFAC) and bilinear least-squares (BLLS), whether the second-order advantage is required or not. In the latter case, the sensitivity is correctly estimated either if the advantage is achieved by processing the unknown sample together with the calibration set (PARAFAC), or by post-calibration residual bilinearization (BLLS). The expression includes, as special cases, the sensitivity expressions already discussed by Messick, Kalivas and Lang (MKL) and by Ho, Christian and Davidson (HCD). The former one is the maximum achievable sensitivity in a given calibration situation, where all components are present in the calibration set of samples. The latter approach gives the lowest possible sensitivity, corresponding to only calibrating the analyte of interest, leaving the remaining components as uncalibrated constituents of the unknown sample. In intermediate situations, that is more than one calibrated analyte and presence of unexpected components in the unknown sample, only the present approach is able to provide a satisfactory sensitivity parameter, in close agreement with previously described Monte Carlo numerical simulations.Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Faber, Nicolaas (Klaas) M.. Chemometry Consultancy; Países BajosJohn Wiley & Sons Ltd2005-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135504Olivieri, Alejandro Cesar; Faber, Nicolaas (Klaas) M.; A closed-form expression for computing the sensitivity in second-order bilinear calibration; John Wiley & Sons Ltd; Journal of Chemometrics; 19; 11-12; 11-2005; 583-5920886-9383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/cem.964info:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cem.964info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:14Zoai:ri.conicet.gov.ar:11336/135504instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:14.387CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A closed-form expression for computing the sensitivity in second-order bilinear calibration
title A closed-form expression for computing the sensitivity in second-order bilinear calibration
spellingShingle A closed-form expression for computing the sensitivity in second-order bilinear calibration
Olivieri, Alejandro Cesar
BILINEAR LEAST-SQUARES
NET ANALYTE SIGNAL
PARALLEL FACTOR ANALYSIS
SECOND-ORDER BILINEAR CALIBRATION
SENSITIVITY
title_short A closed-form expression for computing the sensitivity in second-order bilinear calibration
title_full A closed-form expression for computing the sensitivity in second-order bilinear calibration
title_fullStr A closed-form expression for computing the sensitivity in second-order bilinear calibration
title_full_unstemmed A closed-form expression for computing the sensitivity in second-order bilinear calibration
title_sort A closed-form expression for computing the sensitivity in second-order bilinear calibration
dc.creator.none.fl_str_mv Olivieri, Alejandro Cesar
Faber, Nicolaas (Klaas) M.
author Olivieri, Alejandro Cesar
author_facet Olivieri, Alejandro Cesar
Faber, Nicolaas (Klaas) M.
author_role author
author2 Faber, Nicolaas (Klaas) M.
author2_role author
dc.subject.none.fl_str_mv BILINEAR LEAST-SQUARES
NET ANALYTE SIGNAL
PARALLEL FACTOR ANALYSIS
SECOND-ORDER BILINEAR CALIBRATION
SENSITIVITY
topic BILINEAR LEAST-SQUARES
NET ANALYTE SIGNAL
PARALLEL FACTOR ANALYSIS
SECOND-ORDER BILINEAR CALIBRATION
SENSITIVITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A general expression is derived for estimating the sensitivity of second-order bilinear calibration models, particularly parallel factor analysis (PARAFAC) and bilinear least-squares (BLLS), whether the second-order advantage is required or not. In the latter case, the sensitivity is correctly estimated either if the advantage is achieved by processing the unknown sample together with the calibration set (PARAFAC), or by post-calibration residual bilinearization (BLLS). The expression includes, as special cases, the sensitivity expressions already discussed by Messick, Kalivas and Lang (MKL) and by Ho, Christian and Davidson (HCD). The former one is the maximum achievable sensitivity in a given calibration situation, where all components are present in the calibration set of samples. The latter approach gives the lowest possible sensitivity, corresponding to only calibrating the analyte of interest, leaving the remaining components as uncalibrated constituents of the unknown sample. In intermediate situations, that is more than one calibrated analyte and presence of unexpected components in the unknown sample, only the present approach is able to provide a satisfactory sensitivity parameter, in close agreement with previously described Monte Carlo numerical simulations.
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Faber, Nicolaas (Klaas) M.. Chemometry Consultancy; Países Bajos
description A general expression is derived for estimating the sensitivity of second-order bilinear calibration models, particularly parallel factor analysis (PARAFAC) and bilinear least-squares (BLLS), whether the second-order advantage is required or not. In the latter case, the sensitivity is correctly estimated either if the advantage is achieved by processing the unknown sample together with the calibration set (PARAFAC), or by post-calibration residual bilinearization (BLLS). The expression includes, as special cases, the sensitivity expressions already discussed by Messick, Kalivas and Lang (MKL) and by Ho, Christian and Davidson (HCD). The former one is the maximum achievable sensitivity in a given calibration situation, where all components are present in the calibration set of samples. The latter approach gives the lowest possible sensitivity, corresponding to only calibrating the analyte of interest, leaving the remaining components as uncalibrated constituents of the unknown sample. In intermediate situations, that is more than one calibrated analyte and presence of unexpected components in the unknown sample, only the present approach is able to provide a satisfactory sensitivity parameter, in close agreement with previously described Monte Carlo numerical simulations.
publishDate 2005
dc.date.none.fl_str_mv 2005-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/135504
Olivieri, Alejandro Cesar; Faber, Nicolaas (Klaas) M.; A closed-form expression for computing the sensitivity in second-order bilinear calibration; John Wiley & Sons Ltd; Journal of Chemometrics; 19; 11-12; 11-2005; 583-592
0886-9383
CONICET Digital
CONICET
url http://hdl.handle.net/11336/135504
identifier_str_mv Olivieri, Alejandro Cesar; Faber, Nicolaas (Klaas) M.; A closed-form expression for computing the sensitivity in second-order bilinear calibration; John Wiley & Sons Ltd; Journal of Chemometrics; 19; 11-12; 11-2005; 583-592
0886-9383
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/cem.964
info:eu-repo/semantics/altIdentifier/url/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/cem.964
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613134603517952
score 13.070432