Spoken emotion recognition using hierarchical classifiers

Autores
Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The recognition of the emotional state of speakers is a multi-disciplinary research area that has received great interest over the last years. One of the most important goals is to improve the voice-based human-machine interactions. Several works on this domain use the prosodic features or the spectrum characteristics of speech signal, with neural networks, Gaussian mixtures and other standard classifiers. Usually, there is no acoustic interpretation of types of errors in the results. In this paper, the spectral characteristics of emotional signals are used in order to group emotions based on acoustic rather than psychological considerations. Standard classifiers based on Gaussian Mixture Models, Hidden Markov Models and Multilayer Perceptron are tested. These classifiers have been evaluated with different configurations and input features, in order to design a new hierarchical method for emotion classification. The proposed multiple feature hierarchical method for seven emotions, based on spectral and prosodic information, improves the performance over the standard classifiers and the fixed features.
Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
Materia
Emotion Recognition
Hidden Markov Model
Hierarchical Classifiers
Multilayer Perceptron
Spectral Information
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/74185

id CONICETDig_ad5f380017fa1e53d4348d4657ea2807
oai_identifier_str oai:ri.conicet.gov.ar:11336/74185
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spoken emotion recognition using hierarchical classifiersAlbornoz, Enrique MarceloMilone, Diego HumbertoRufiner, Hugo LeonardoEmotion RecognitionHidden Markov ModelHierarchical ClassifiersMultilayer PerceptronSpectral Informationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The recognition of the emotional state of speakers is a multi-disciplinary research area that has received great interest over the last years. One of the most important goals is to improve the voice-based human-machine interactions. Several works on this domain use the prosodic features or the spectrum characteristics of speech signal, with neural networks, Gaussian mixtures and other standard classifiers. Usually, there is no acoustic interpretation of types of errors in the results. In this paper, the spectral characteristics of emotional signals are used in order to group emotions based on acoustic rather than psychological considerations. Standard classifiers based on Gaussian Mixture Models, Hidden Markov Models and Multilayer Perceptron are tested. These classifiers have been evaluated with different configurations and input features, in order to design a new hierarchical method for emotion classification. The proposed multiple feature hierarchical method for seven emotions, based on spectral and prosodic information, improves the performance over the standard classifiers and the fixed features.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaElsevier2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74185Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Spoken emotion recognition using hierarchical classifiers; Elsevier; Computer Speech And Language; 25; 3; 7-2011; 556-5700885-2308CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885230810000665info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csl.2010.10.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:43:08Zoai:ri.conicet.gov.ar:11336/74185instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:43:08.634CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spoken emotion recognition using hierarchical classifiers
title Spoken emotion recognition using hierarchical classifiers
spellingShingle Spoken emotion recognition using hierarchical classifiers
Albornoz, Enrique Marcelo
Emotion Recognition
Hidden Markov Model
Hierarchical Classifiers
Multilayer Perceptron
Spectral Information
title_short Spoken emotion recognition using hierarchical classifiers
title_full Spoken emotion recognition using hierarchical classifiers
title_fullStr Spoken emotion recognition using hierarchical classifiers
title_full_unstemmed Spoken emotion recognition using hierarchical classifiers
title_sort Spoken emotion recognition using hierarchical classifiers
dc.creator.none.fl_str_mv Albornoz, Enrique Marcelo
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author Albornoz, Enrique Marcelo
author_facet Albornoz, Enrique Marcelo
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author_role author
author2 Milone, Diego Humberto
Rufiner, Hugo Leonardo
author2_role author
author
dc.subject.none.fl_str_mv Emotion Recognition
Hidden Markov Model
Hierarchical Classifiers
Multilayer Perceptron
Spectral Information
topic Emotion Recognition
Hidden Markov Model
Hierarchical Classifiers
Multilayer Perceptron
Spectral Information
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The recognition of the emotional state of speakers is a multi-disciplinary research area that has received great interest over the last years. One of the most important goals is to improve the voice-based human-machine interactions. Several works on this domain use the prosodic features or the spectrum characteristics of speech signal, with neural networks, Gaussian mixtures and other standard classifiers. Usually, there is no acoustic interpretation of types of errors in the results. In this paper, the spectral characteristics of emotional signals are used in order to group emotions based on acoustic rather than psychological considerations. Standard classifiers based on Gaussian Mixture Models, Hidden Markov Models and Multilayer Perceptron are tested. These classifiers have been evaluated with different configurations and input features, in order to design a new hierarchical method for emotion classification. The proposed multiple feature hierarchical method for seven emotions, based on spectral and prosodic information, improves the performance over the standard classifiers and the fixed features.
Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; Argentina
description The recognition of the emotional state of speakers is a multi-disciplinary research area that has received great interest over the last years. One of the most important goals is to improve the voice-based human-machine interactions. Several works on this domain use the prosodic features or the spectrum characteristics of speech signal, with neural networks, Gaussian mixtures and other standard classifiers. Usually, there is no acoustic interpretation of types of errors in the results. In this paper, the spectral characteristics of emotional signals are used in order to group emotions based on acoustic rather than psychological considerations. Standard classifiers based on Gaussian Mixture Models, Hidden Markov Models and Multilayer Perceptron are tested. These classifiers have been evaluated with different configurations and input features, in order to design a new hierarchical method for emotion classification. The proposed multiple feature hierarchical method for seven emotions, based on spectral and prosodic information, improves the performance over the standard classifiers and the fixed features.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/74185
Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Spoken emotion recognition using hierarchical classifiers; Elsevier; Computer Speech And Language; 25; 3; 7-2011; 556-570
0885-2308
CONICET Digital
CONICET
url http://hdl.handle.net/11336/74185
identifier_str_mv Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Spoken emotion recognition using hierarchical classifiers; Elsevier; Computer Speech And Language; 25; 3; 7-2011; 556-570
0885-2308
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885230810000665
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csl.2010.10.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082935575281664
score 13.22299