Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles
- Autores
- Albornoz, Enrique Marcelo; Milone, Diego Humberto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Over the last years, researchers have addressed emotional state identification because it is an important issue to achieve more natural speech interactive systems. There are several theories that explain emotional expressiveness as a result of natural evolution, as a social construction, or a combination of both. In this work, we propose a novel system to model each language independently, preserving the cultural properties. In a second stage, we use the concept of universality of emotions to map and predict emotions in never-seen languages. Features and classifiers widely tested for similar tasks were used to set the baselines. We developed a novel ensemble classifier to deal with multiple languages and tested it on never-seen languages. Furthermore, this ensemble uses the Emotion Profiles technique in order to map features from diverse languages in a more tractable space. The experiments were performed in a language-independent scheme. Results show that the proposed model improves the baseline accuracy, whereas its modular design allows the incorporation of a new language without having to train the whole system.
Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
Emotion Recognition
Ensemble Classifier
Emotion Profiles
Not-Yet-Encountered Languages - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47047
Ver los metadatos del registro completo
id |
CONICETDig_32b83880059956b5170ca745f05fd5d8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47047 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion ProfilesAlbornoz, Enrique MarceloMilone, Diego HumbertoEmotion RecognitionEnsemble ClassifierEmotion ProfilesNot-Yet-Encountered Languageshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Over the last years, researchers have addressed emotional state identification because it is an important issue to achieve more natural speech interactive systems. There are several theories that explain emotional expressiveness as a result of natural evolution, as a social construction, or a combination of both. In this work, we propose a novel system to model each language independently, preserving the cultural properties. In a second stage, we use the concept of universality of emotions to map and predict emotions in never-seen languages. Features and classifiers widely tested for similar tasks were used to set the baselines. We developed a novel ensemble classifier to deal with multiple languages and tested it on never-seen languages. Furthermore, this ensemble uses the Emotion Profiles technique in order to map features from diverse languages in a more tractable space. The experiments were performed in a language-independent scheme. Results show that the proposed model improves the baseline accuracy, whereas its modular design allows the incorporation of a new language without having to train the whole system.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaIEEE2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47047Albornoz, Enrique Marcelo; Milone, Diego Humberto; Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles; IEEE; IEEE Transactions on Affective Computing; 8; 1-2017; 43-531949-3045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.computer.org/csdl/trans/ta/preprint/07337399.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1109/TAFFC.2015.2503757info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:39Zoai:ri.conicet.gov.ar:11336/47047instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:39.774CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles |
title |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles |
spellingShingle |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles Albornoz, Enrique Marcelo Emotion Recognition Ensemble Classifier Emotion Profiles Not-Yet-Encountered Languages |
title_short |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles |
title_full |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles |
title_fullStr |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles |
title_full_unstemmed |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles |
title_sort |
Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles |
dc.creator.none.fl_str_mv |
Albornoz, Enrique Marcelo Milone, Diego Humberto |
author |
Albornoz, Enrique Marcelo |
author_facet |
Albornoz, Enrique Marcelo Milone, Diego Humberto |
author_role |
author |
author2 |
Milone, Diego Humberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Emotion Recognition Ensemble Classifier Emotion Profiles Not-Yet-Encountered Languages |
topic |
Emotion Recognition Ensemble Classifier Emotion Profiles Not-Yet-Encountered Languages |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Over the last years, researchers have addressed emotional state identification because it is an important issue to achieve more natural speech interactive systems. There are several theories that explain emotional expressiveness as a result of natural evolution, as a social construction, or a combination of both. In this work, we propose a novel system to model each language independently, preserving the cultural properties. In a second stage, we use the concept of universality of emotions to map and predict emotions in never-seen languages. Features and classifiers widely tested for similar tasks were used to set the baselines. We developed a novel ensemble classifier to deal with multiple languages and tested it on never-seen languages. Furthermore, this ensemble uses the Emotion Profiles technique in order to map features from diverse languages in a more tractable space. The experiments were performed in a language-independent scheme. Results show that the proposed model improves the baseline accuracy, whereas its modular design allows the incorporation of a new language without having to train the whole system. Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
Over the last years, researchers have addressed emotional state identification because it is an important issue to achieve more natural speech interactive systems. There are several theories that explain emotional expressiveness as a result of natural evolution, as a social construction, or a combination of both. In this work, we propose a novel system to model each language independently, preserving the cultural properties. In a second stage, we use the concept of universality of emotions to map and predict emotions in never-seen languages. Features and classifiers widely tested for similar tasks were used to set the baselines. We developed a novel ensemble classifier to deal with multiple languages and tested it on never-seen languages. Furthermore, this ensemble uses the Emotion Profiles technique in order to map features from diverse languages in a more tractable space. The experiments were performed in a language-independent scheme. Results show that the proposed model improves the baseline accuracy, whereas its modular design allows the incorporation of a new language without having to train the whole system. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47047 Albornoz, Enrique Marcelo; Milone, Diego Humberto; Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles; IEEE; IEEE Transactions on Affective Computing; 8; 1-2017; 43-53 1949-3045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47047 |
identifier_str_mv |
Albornoz, Enrique Marcelo; Milone, Diego Humberto; Emotion Recognition in Never-Seen Languages Using a Novel Ensemble Method With Emotion Profiles; IEEE; IEEE Transactions on Affective Computing; 8; 1-2017; 43-53 1949-3045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.computer.org/csdl/trans/ta/preprint/07337399.pdf info:eu-repo/semantics/altIdentifier/doi/10.1109/TAFFC.2015.2503757 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614447815983104 |
score |
13.070432 |