K-theory of cones of smooth varieties
- Autores
- Cortiñas, Guillermo Horacio; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles A.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the K-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve then we calculate K0(R) and K1(R), and prove that K−1(R) = ⊕H1 (C, O(n)). The formula for K0(R) involves the Zariski cohomology of twisted K¨ahler differentials on the variety.
Fil: Cortiñas, Guillermo Horacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina
Fil: Haesemeyer, Christian. University of California at Los Angeles; Estados Unidos
Fil: Walker, Mark E.. Universidad de Nebraska - Lincoln; Estados Unidos
Fil: Weibel, Charles A.. Rutgers University; Estados Unidos - Materia
-
Algebraic K-theory
Affine cone
Cohomology of differential forms
Cyclic homology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14841
Ver los metadatos del registro completo
| id |
CONICETDig_f26ea82c3d348cb51e05571121727e3c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14841 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
K-theory of cones of smooth varietiesCortiñas, Guillermo HoracioHaesemeyer, ChristianWalker, Mark E.Weibel, Charles A.Algebraic K-theoryAffine coneCohomology of differential formsCyclic homologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the K-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve then we calculate K0(R) and K1(R), and prove that K−1(R) = ⊕H1 (C, O(n)). The formula for K0(R) involves the Zariski cohomology of twisted K¨ahler differentials on the variety.Fil: Cortiñas, Guillermo Horacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; ArgentinaFil: Haesemeyer, Christian. University of California at Los Angeles; Estados UnidosFil: Walker, Mark E.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Weibel, Charles A.. Rutgers University; Estados UnidosUniv Press Inc2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14841Cortiñas, Guillermo Horacio; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles A.; K-theory of cones of smooth varieties; Univ Press Inc; Journal Of Algebraic Geometry; 22; 1; 2-2013; 13-341056-3911enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/jag/2013-22-01/S1056-3911-2011-00583-3/info:eu-repo/semantics/altIdentifier/doi/10.1090/S1056-3911-2011-00583-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:41:30Zoai:ri.conicet.gov.ar:11336/14841instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:41:30.521CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
K-theory of cones of smooth varieties |
| title |
K-theory of cones of smooth varieties |
| spellingShingle |
K-theory of cones of smooth varieties Cortiñas, Guillermo Horacio Algebraic K-theory Affine cone Cohomology of differential forms Cyclic homology |
| title_short |
K-theory of cones of smooth varieties |
| title_full |
K-theory of cones of smooth varieties |
| title_fullStr |
K-theory of cones of smooth varieties |
| title_full_unstemmed |
K-theory of cones of smooth varieties |
| title_sort |
K-theory of cones of smooth varieties |
| dc.creator.none.fl_str_mv |
Cortiñas, Guillermo Horacio Haesemeyer, Christian Walker, Mark E. Weibel, Charles A. |
| author |
Cortiñas, Guillermo Horacio |
| author_facet |
Cortiñas, Guillermo Horacio Haesemeyer, Christian Walker, Mark E. Weibel, Charles A. |
| author_role |
author |
| author2 |
Haesemeyer, Christian Walker, Mark E. Weibel, Charles A. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Algebraic K-theory Affine cone Cohomology of differential forms Cyclic homology |
| topic |
Algebraic K-theory Affine cone Cohomology of differential forms Cyclic homology |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the K-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve then we calculate K0(R) and K1(R), and prove that K−1(R) = ⊕H1 (C, O(n)). The formula for K0(R) involves the Zariski cohomology of twisted K¨ahler differentials on the variety. Fil: Cortiñas, Guillermo Horacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina Fil: Haesemeyer, Christian. University of California at Los Angeles; Estados Unidos Fil: Walker, Mark E.. Universidad de Nebraska - Lincoln; Estados Unidos Fil: Weibel, Charles A.. Rutgers University; Estados Unidos |
| description |
Let R be the homogeneous coordinate ring of a smooth projective variety X over a field k of characteristic 0. We calculate the K-theory of R in terms of the geometry of the projective embedding of X. In particular, if X is a curve then we calculate K0(R) and K1(R), and prove that K−1(R) = ⊕H1 (C, O(n)). The formula for K0(R) involves the Zariski cohomology of twisted K¨ahler differentials on the variety. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14841 Cortiñas, Guillermo Horacio; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles A.; K-theory of cones of smooth varieties; Univ Press Inc; Journal Of Algebraic Geometry; 22; 1; 2-2013; 13-34 1056-3911 |
| url |
http://hdl.handle.net/11336/14841 |
| identifier_str_mv |
Cortiñas, Guillermo Horacio; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles A.; K-theory of cones of smooth varieties; Univ Press Inc; Journal Of Algebraic Geometry; 22; 1; 2-2013; 13-34 1056-3911 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/jag/2013-22-01/S1056-3911-2011-00583-3/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S1056-3911-2011-00583-3 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Univ Press Inc |
| publisher.none.fl_str_mv |
Univ Press Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847978111364235264 |
| score |
13.087074 |