The K-theory of toric varieties in positive characteristic
- Autores
- Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Haesemeyer, C.. University of California; Estados Unidos
Fil: Walker, Mark E.. University Of Nebraska; Estados Unidos
Fil: Weibel, C.. Rutgers University; Estados Unidos - Materia
-
K-Theory
Topological Cyclic Homology
Monoid Scheme
Gubeladze'S Nilpotency Conjecture. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18781
Ver los metadatos del registro completo
| id |
CONICETDig_f47b9cc16d90663e27e7db8818e4e4ce |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18781 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The K-theory of toric varieties in positive characteristicCortiñas, Guillermo HoracioHaesemeyer, C.Walker, Mark E.Weibel, C.K-TheoryTopological Cyclic HomologyMonoid SchemeGubeladze'S Nilpotency Conjecture.https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Haesemeyer, C.. University of California; Estados UnidosFil: Walker, Mark E.. University Of Nebraska; Estados UnidosFil: Weibel, C.. Rutgers University; Estados UnidosLondon Math Soc2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18781Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.; The K-theory of toric varieties in positive characteristic; London Math Soc; Journal Of Topology; 7; 1; 3-2014; 247-2861753-8416CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/jtopol/jtt026info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jtopol/jtt026/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:56:32Zoai:ri.conicet.gov.ar:11336/18781instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:56:32.824CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The K-theory of toric varieties in positive characteristic |
| title |
The K-theory of toric varieties in positive characteristic |
| spellingShingle |
The K-theory of toric varieties in positive characteristic Cortiñas, Guillermo Horacio K-Theory Topological Cyclic Homology Monoid Scheme Gubeladze'S Nilpotency Conjecture. |
| title_short |
The K-theory of toric varieties in positive characteristic |
| title_full |
The K-theory of toric varieties in positive characteristic |
| title_fullStr |
The K-theory of toric varieties in positive characteristic |
| title_full_unstemmed |
The K-theory of toric varieties in positive characteristic |
| title_sort |
The K-theory of toric varieties in positive characteristic |
| dc.creator.none.fl_str_mv |
Cortiñas, Guillermo Horacio Haesemeyer, C. Walker, Mark E. Weibel, C. |
| author |
Cortiñas, Guillermo Horacio |
| author_facet |
Cortiñas, Guillermo Horacio Haesemeyer, C. Walker, Mark E. Weibel, C. |
| author_role |
author |
| author2 |
Haesemeyer, C. Walker, Mark E. Weibel, C. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
K-Theory Topological Cyclic Homology Monoid Scheme Gubeladze'S Nilpotency Conjecture. |
| topic |
K-Theory Topological Cyclic Homology Monoid Scheme Gubeladze'S Nilpotency Conjecture. |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Haesemeyer, C.. University of California; Estados Unidos Fil: Walker, Mark E.. University Of Nebraska; Estados Unidos Fil: Weibel, C.. Rutgers University; Estados Unidos |
| description |
We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18781 Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.; The K-theory of toric varieties in positive characteristic; London Math Soc; Journal Of Topology; 7; 1; 3-2014; 247-286 1753-8416 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/18781 |
| identifier_str_mv |
Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.; The K-theory of toric varieties in positive characteristic; London Math Soc; Journal Of Topology; 7; 1; 3-2014; 247-286 1753-8416 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1112/jtopol/jtt026 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jtopol/jtt026/abstract |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
London Math Soc |
| publisher.none.fl_str_mv |
London Math Soc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977352019050496 |
| score |
13.087074 |