The K-theory of toric varieties in positive characteristic

Autores
Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Haesemeyer, C.. University of California; Estados Unidos
Fil: Walker, Mark E.. University Of Nebraska; Estados Unidos
Fil: Weibel, C.. Rutgers University; Estados Unidos
Materia
K-Theory
Topological Cyclic Homology
Monoid Scheme
Gubeladze'S Nilpotency Conjecture.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18781

id CONICETDig_f47b9cc16d90663e27e7db8818e4e4ce
oai_identifier_str oai:ri.conicet.gov.ar:11336/18781
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The K-theory of toric varieties in positive characteristicCortiñas, Guillermo HoracioHaesemeyer, C.Walker, Mark E.Weibel, C.K-TheoryTopological Cyclic HomologyMonoid SchemeGubeladze'S Nilpotency Conjecture.https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Haesemeyer, C.. University of California; Estados UnidosFil: Walker, Mark E.. University Of Nebraska; Estados UnidosFil: Weibel, C.. Rutgers University; Estados UnidosLondon Math Soc2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18781Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.; The K-theory of toric varieties in positive characteristic; London Math Soc; Journal Of Topology; 7; 1; 3-2014; 247-2861753-8416CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/jtopol/jtt026info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jtopol/jtt026/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:53Zoai:ri.conicet.gov.ar:11336/18781instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:53.43CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The K-theory of toric varieties in positive characteristic
title The K-theory of toric varieties in positive characteristic
spellingShingle The K-theory of toric varieties in positive characteristic
Cortiñas, Guillermo Horacio
K-Theory
Topological Cyclic Homology
Monoid Scheme
Gubeladze'S Nilpotency Conjecture.
title_short The K-theory of toric varieties in positive characteristic
title_full The K-theory of toric varieties in positive characteristic
title_fullStr The K-theory of toric varieties in positive characteristic
title_full_unstemmed The K-theory of toric varieties in positive characteristic
title_sort The K-theory of toric varieties in positive characteristic
dc.creator.none.fl_str_mv Cortiñas, Guillermo Horacio
Haesemeyer, C.
Walker, Mark E.
Weibel, C.
author Cortiñas, Guillermo Horacio
author_facet Cortiñas, Guillermo Horacio
Haesemeyer, C.
Walker, Mark E.
Weibel, C.
author_role author
author2 Haesemeyer, C.
Walker, Mark E.
Weibel, C.
author2_role author
author
author
dc.subject.none.fl_str_mv K-Theory
Topological Cyclic Homology
Monoid Scheme
Gubeladze'S Nilpotency Conjecture.
topic K-Theory
Topological Cyclic Homology
Monoid Scheme
Gubeladze'S Nilpotency Conjecture.
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Haesemeyer, C.. University of California; Estados Unidos
Fil: Walker, Mark E.. University Of Nebraska; Estados Unidos
Fil: Weibel, C.. Rutgers University; Estados Unidos
description We show that if X is a toric scheme over a regular ring containing a field of finite characteristic, then the direct limit of the K-groups of X taken over any infinite sequence of non-trivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affine case of our result was conjectured by Gubeladze.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18781
Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.; The K-theory of toric varieties in positive characteristic; London Math Soc; Journal Of Topology; 7; 1; 3-2014; 247-286
1753-8416
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18781
identifier_str_mv Cortiñas, Guillermo Horacio; Haesemeyer, C.; Walker, Mark E.; Weibel, C.; The K-theory of toric varieties in positive characteristic; London Math Soc; Journal Of Topology; 7; 1; 3-2014; 247-286
1753-8416
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1112/jtopol/jtt026
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jtopol/jtt026/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv London Math Soc
publisher.none.fl_str_mv London Math Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269254956613632
score 13.13397