Operator ideals and assembly maps in K-theory
- Autores
- Cortiñas, Guillermo Horacio; Tartaglia, Gisela
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the Schatten ideal Lp consisting of those operators whose sequence of singular values is p-summable; put S = S p Lp. Let G be a group and Vcyc the family of virtually cyclic subgroups. Guoliang Yu proved that the K-theory assembly map HG ∗ (E(G, Vcyc), K(S)) → K∗(S[G]) is rationally injective. His proof involves the construction of a certain Chern character tailored to work with coefficients S and the use of some results about algebraic K-theory of operator ideals and about controlled topology and coarse geometry. In this paper we give a different proof of Yu’s result. Our proof uses the usual Chern character to cyclic homology. Like Yu’s, it relies on results on algebraic K-theory of operator ideals, but no controlled topology or coarse geometry techniques are used. We formulate the result in terms of homotopy K-theory. We prove that the rational assembly map HG ∗ (E(G, Fin), KH(L p )) ⊗ Q → KH∗(L p [G]) ⊗ Q is injective. We show that the latter map is equivalent to the assembly map considered by Yu, and thus obtain his result as a corollary.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Algebraic K-theory
Schatten ideals
Isomorphism conjecture
Cyclic homology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18825
Ver los metadatos del registro completo
id |
CONICETDig_f966162aa4e79e39d3ee7dcc37c6e740 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18825 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Operator ideals and assembly maps in K-theoryCortiñas, Guillermo HoracioTartaglia, GiselaAlgebraic K-theorySchatten idealsIsomorphism conjectureCyclic homologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the Schatten ideal Lp consisting of those operators whose sequence of singular values is p-summable; put S = S p Lp. Let G be a group and Vcyc the family of virtually cyclic subgroups. Guoliang Yu proved that the K-theory assembly map HG ∗ (E(G, Vcyc), K(S)) → K∗(S[G]) is rationally injective. His proof involves the construction of a certain Chern character tailored to work with coefficients S and the use of some results about algebraic K-theory of operator ideals and about controlled topology and coarse geometry. In this paper we give a different proof of Yu’s result. Our proof uses the usual Chern character to cyclic homology. Like Yu’s, it relies on results on algebraic K-theory of operator ideals, but no controlled topology or coarse geometry techniques are used. We formulate the result in terms of homotopy K-theory. We prove that the rational assembly map HG ∗ (E(G, Fin), KH(L p )) ⊗ Q → KH∗(L p [G]) ⊗ Q is injective. We show that the latter map is equivalent to the assembly map considered by Yu, and thus obtain his result as a corollary.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaAmerican Mathematical Society2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18825Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Operator ideals and assembly maps in K-theory; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 12-2013; 1089-10990002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2013-11837-Xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1202.4999info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2014-142-04/S0002-9939-2013-11837-X/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:25Zoai:ri.conicet.gov.ar:11336/18825instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:25.275CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Operator ideals and assembly maps in K-theory |
title |
Operator ideals and assembly maps in K-theory |
spellingShingle |
Operator ideals and assembly maps in K-theory Cortiñas, Guillermo Horacio Algebraic K-theory Schatten ideals Isomorphism conjecture Cyclic homology |
title_short |
Operator ideals and assembly maps in K-theory |
title_full |
Operator ideals and assembly maps in K-theory |
title_fullStr |
Operator ideals and assembly maps in K-theory |
title_full_unstemmed |
Operator ideals and assembly maps in K-theory |
title_sort |
Operator ideals and assembly maps in K-theory |
dc.creator.none.fl_str_mv |
Cortiñas, Guillermo Horacio Tartaglia, Gisela |
author |
Cortiñas, Guillermo Horacio |
author_facet |
Cortiñas, Guillermo Horacio Tartaglia, Gisela |
author_role |
author |
author2 |
Tartaglia, Gisela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Algebraic K-theory Schatten ideals Isomorphism conjecture Cyclic homology |
topic |
Algebraic K-theory Schatten ideals Isomorphism conjecture Cyclic homology |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the Schatten ideal Lp consisting of those operators whose sequence of singular values is p-summable; put S = S p Lp. Let G be a group and Vcyc the family of virtually cyclic subgroups. Guoliang Yu proved that the K-theory assembly map HG ∗ (E(G, Vcyc), K(S)) → K∗(S[G]) is rationally injective. His proof involves the construction of a certain Chern character tailored to work with coefficients S and the use of some results about algebraic K-theory of operator ideals and about controlled topology and coarse geometry. In this paper we give a different proof of Yu’s result. Our proof uses the usual Chern character to cyclic homology. Like Yu’s, it relies on results on algebraic K-theory of operator ideals, but no controlled topology or coarse geometry techniques are used. We formulate the result in terms of homotopy K-theory. We prove that the rational assembly map HG ∗ (E(G, Fin), KH(L p )) ⊗ Q → KH∗(L p [G]) ⊗ Q is injective. We show that the latter map is equivalent to the assembly map considered by Yu, and thus obtain his result as a corollary. Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Tartaglia, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
Let B be the ring of bounded operators in a complex, separable Hilbert space. For p > 0 consider the Schatten ideal Lp consisting of those operators whose sequence of singular values is p-summable; put S = S p Lp. Let G be a group and Vcyc the family of virtually cyclic subgroups. Guoliang Yu proved that the K-theory assembly map HG ∗ (E(G, Vcyc), K(S)) → K∗(S[G]) is rationally injective. His proof involves the construction of a certain Chern character tailored to work with coefficients S and the use of some results about algebraic K-theory of operator ideals and about controlled topology and coarse geometry. In this paper we give a different proof of Yu’s result. Our proof uses the usual Chern character to cyclic homology. Like Yu’s, it relies on results on algebraic K-theory of operator ideals, but no controlled topology or coarse geometry techniques are used. We formulate the result in terms of homotopy K-theory. We prove that the rational assembly map HG ∗ (E(G, Fin), KH(L p )) ⊗ Q → KH∗(L p [G]) ⊗ Q is injective. We show that the latter map is equivalent to the assembly map considered by Yu, and thus obtain his result as a corollary. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18825 Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Operator ideals and assembly maps in K-theory; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 12-2013; 1089-1099 0002-9939 1088-6826 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18825 |
identifier_str_mv |
Cortiñas, Guillermo Horacio; Tartaglia, Gisela; Operator ideals and assembly maps in K-theory; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 12-2013; 1089-1099 0002-9939 1088-6826 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2013-11837-X info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1202.4999 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2014-142-04/S0002-9939-2013-11837-X/home.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270157254164480 |
score |
13.13397 |