Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods

Autores
Sanchez, Maria Alejandra; Rodriguez, Andrea Paola; Monsalve, Leandro Nicolas; Georgiadou S
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
One major technique to fabricate core-shell fibers is emulsion electrospinning due to its simple setup and potential to preserve the bioactivity of a loaded agent within the core. Here, we explore two different emulsion electrospinning approaches to encapsulate a hydrophilic drug, as Lidocaine Hydrochloride (LidHCl), inside a hydrophobic polymer fiber, as Poly-Lactic Acid (PLA) in a core-shell structure. Therefore, we incorporate the drug in the fiber core by means of an aqueous phase containing or lacking a polymeric matrix Polyvinyl Alcohol (PVA) to disperse the drug. We studied the electrospinnability of PLA-based emulsion solutions to produce LidHCl-loaded smooth fibers by varying the applied voltage and the tip-to-collector distance. We evaluated the morphology and chemical properties of emulsion electrospun fibers by field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Finally, we analyzed the drug release profile of both core-shell structures and compared them with blend PLA-LidHCl fiber system. Analysis revealed that emulsion electrospun nanofibers were able to encapsulate the drug within the fibers in both cases. However, PVA matrix inside the core played a key role on the encapsulation and spatial distribution of the drug and therefore on its release. Results suggest that the in vitro release profile of a hydrophilic drug could be tailored by the presence of the inner matrix polymer enabling the production of electrospun fibers with desired features.
Fil: Sanchez, Maria Alejandra. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. University of Loughborough; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Rodriguez, Andrea Paola. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Georgiadou S. University of Loughborough; Reino Unido
Materia
Emulsion Electrospinning
Drug Delivery
Core-Shell
Lidocaine Hydrochloride
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/184670

id CONICETDig_f1fad0afc2aab5b3d424bba745fda5ce
oai_identifier_str oai:ri.conicet.gov.ar:11336/184670
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Emulsion Electrospinning for Drug Delivery: Two Encapsulation MethodsSanchez, Maria AlejandraRodriguez, Andrea PaolaMonsalve, Leandro NicolasGeorgiadou SEmulsion ElectrospinningDrug DeliveryCore-ShellLidocaine Hydrochloridehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2One major technique to fabricate core-shell fibers is emulsion electrospinning due to its simple setup and potential to preserve the bioactivity of a loaded agent within the core. Here, we explore two different emulsion electrospinning approaches to encapsulate a hydrophilic drug, as Lidocaine Hydrochloride (LidHCl), inside a hydrophobic polymer fiber, as Poly-Lactic Acid (PLA) in a core-shell structure. Therefore, we incorporate the drug in the fiber core by means of an aqueous phase containing or lacking a polymeric matrix Polyvinyl Alcohol (PVA) to disperse the drug. We studied the electrospinnability of PLA-based emulsion solutions to produce LidHCl-loaded smooth fibers by varying the applied voltage and the tip-to-collector distance. We evaluated the morphology and chemical properties of emulsion electrospun fibers by field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Finally, we analyzed the drug release profile of both core-shell structures and compared them with blend PLA-LidHCl fiber system. Analysis revealed that emulsion electrospun nanofibers were able to encapsulate the drug within the fibers in both cases. However, PVA matrix inside the core played a key role on the encapsulation and spatial distribution of the drug and therefore on its release. Results suggest that the in vitro release profile of a hydrophilic drug could be tailored by the presence of the inner matrix polymer enabling the production of electrospun fibers with desired features.Fil: Sanchez, Maria Alejandra. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. University of Loughborough; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Rodriguez, Andrea Paola. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Georgiadou S. University of Loughborough; Reino UnidoAustin Publishing Group2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/184670Sanchez, Maria Alejandra; Rodriguez, Andrea Paola; Monsalve, Leandro Nicolas; Georgiadou S; Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods; Austin Publishing Group; Austin Journal of Pharmacology and Therapeutics; 8; 1; 8-2020; 1-82373-6208CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://austinpublishinggroup.com/pharmacology-therapeutics/fulltext/ajpt-v8-id1117.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:25Zoai:ri.conicet.gov.ar:11336/184670instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:26.07CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
title Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
spellingShingle Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
Sanchez, Maria Alejandra
Emulsion Electrospinning
Drug Delivery
Core-Shell
Lidocaine Hydrochloride
title_short Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
title_full Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
title_fullStr Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
title_full_unstemmed Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
title_sort Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
dc.creator.none.fl_str_mv Sanchez, Maria Alejandra
Rodriguez, Andrea Paola
Monsalve, Leandro Nicolas
Georgiadou S
author Sanchez, Maria Alejandra
author_facet Sanchez, Maria Alejandra
Rodriguez, Andrea Paola
Monsalve, Leandro Nicolas
Georgiadou S
author_role author
author2 Rodriguez, Andrea Paola
Monsalve, Leandro Nicolas
Georgiadou S
author2_role author
author
author
dc.subject.none.fl_str_mv Emulsion Electrospinning
Drug Delivery
Core-Shell
Lidocaine Hydrochloride
topic Emulsion Electrospinning
Drug Delivery
Core-Shell
Lidocaine Hydrochloride
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv One major technique to fabricate core-shell fibers is emulsion electrospinning due to its simple setup and potential to preserve the bioactivity of a loaded agent within the core. Here, we explore two different emulsion electrospinning approaches to encapsulate a hydrophilic drug, as Lidocaine Hydrochloride (LidHCl), inside a hydrophobic polymer fiber, as Poly-Lactic Acid (PLA) in a core-shell structure. Therefore, we incorporate the drug in the fiber core by means of an aqueous phase containing or lacking a polymeric matrix Polyvinyl Alcohol (PVA) to disperse the drug. We studied the electrospinnability of PLA-based emulsion solutions to produce LidHCl-loaded smooth fibers by varying the applied voltage and the tip-to-collector distance. We evaluated the morphology and chemical properties of emulsion electrospun fibers by field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Finally, we analyzed the drug release profile of both core-shell structures and compared them with blend PLA-LidHCl fiber system. Analysis revealed that emulsion electrospun nanofibers were able to encapsulate the drug within the fibers in both cases. However, PVA matrix inside the core played a key role on the encapsulation and spatial distribution of the drug and therefore on its release. Results suggest that the in vitro release profile of a hydrophilic drug could be tailored by the presence of the inner matrix polymer enabling the production of electrospun fibers with desired features.
Fil: Sanchez, Maria Alejandra. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. University of Loughborough; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Rodriguez, Andrea Paola. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Georgiadou S. University of Loughborough; Reino Unido
description One major technique to fabricate core-shell fibers is emulsion electrospinning due to its simple setup and potential to preserve the bioactivity of a loaded agent within the core. Here, we explore two different emulsion electrospinning approaches to encapsulate a hydrophilic drug, as Lidocaine Hydrochloride (LidHCl), inside a hydrophobic polymer fiber, as Poly-Lactic Acid (PLA) in a core-shell structure. Therefore, we incorporate the drug in the fiber core by means of an aqueous phase containing or lacking a polymeric matrix Polyvinyl Alcohol (PVA) to disperse the drug. We studied the electrospinnability of PLA-based emulsion solutions to produce LidHCl-loaded smooth fibers by varying the applied voltage and the tip-to-collector distance. We evaluated the morphology and chemical properties of emulsion electrospun fibers by field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Finally, we analyzed the drug release profile of both core-shell structures and compared them with blend PLA-LidHCl fiber system. Analysis revealed that emulsion electrospun nanofibers were able to encapsulate the drug within the fibers in both cases. However, PVA matrix inside the core played a key role on the encapsulation and spatial distribution of the drug and therefore on its release. Results suggest that the in vitro release profile of a hydrophilic drug could be tailored by the presence of the inner matrix polymer enabling the production of electrospun fibers with desired features.
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/184670
Sanchez, Maria Alejandra; Rodriguez, Andrea Paola; Monsalve, Leandro Nicolas; Georgiadou S; Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods; Austin Publishing Group; Austin Journal of Pharmacology and Therapeutics; 8; 1; 8-2020; 1-8
2373-6208
CONICET Digital
CONICET
url http://hdl.handle.net/11336/184670
identifier_str_mv Sanchez, Maria Alejandra; Rodriguez, Andrea Paola; Monsalve, Leandro Nicolas; Georgiadou S; Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods; Austin Publishing Group; Austin Journal of Pharmacology and Therapeutics; 8; 1; 8-2020; 1-8
2373-6208
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://austinpublishinggroup.com/pharmacology-therapeutics/fulltext/ajpt-v8-id1117.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Austin Publishing Group
publisher.none.fl_str_mv Austin Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269343062163456
score 13.13397