Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods
- Autores
- Sanchez, Maria Alejandra; Rodriguez, Andrea Paola; Monsalve, Leandro Nicolas; Georgiadou S
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One major technique to fabricate core-shell fibers is emulsion electrospinning due to its simple setup and potential to preserve the bioactivity of a loaded agent within the core. Here, we explore two different emulsion electrospinning approaches to encapsulate a hydrophilic drug, as Lidocaine Hydrochloride (LidHCl), inside a hydrophobic polymer fiber, as Poly-Lactic Acid (PLA) in a core-shell structure. Therefore, we incorporate the drug in the fiber core by means of an aqueous phase containing or lacking a polymeric matrix Polyvinyl Alcohol (PVA) to disperse the drug. We studied the electrospinnability of PLA-based emulsion solutions to produce LidHCl-loaded smooth fibers by varying the applied voltage and the tip-to-collector distance. We evaluated the morphology and chemical properties of emulsion electrospun fibers by field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Finally, we analyzed the drug release profile of both core-shell structures and compared them with blend PLA-LidHCl fiber system. Analysis revealed that emulsion electrospun nanofibers were able to encapsulate the drug within the fibers in both cases. However, PVA matrix inside the core played a key role on the encapsulation and spatial distribution of the drug and therefore on its release. Results suggest that the in vitro release profile of a hydrophilic drug could be tailored by the presence of the inner matrix polymer enabling the production of electrospun fibers with desired features.
Fil: Sanchez, Maria Alejandra. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. University of Loughborough; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Rodriguez, Andrea Paola. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina
Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina
Fil: Georgiadou S. University of Loughborough; Reino Unido - Materia
-
Emulsion Electrospinning
Drug Delivery
Core-Shell
Lidocaine Hydrochloride - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/184670
Ver los metadatos del registro completo
id |
CONICETDig_f1fad0afc2aab5b3d424bba745fda5ce |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/184670 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation MethodsSanchez, Maria AlejandraRodriguez, Andrea PaolaMonsalve, Leandro NicolasGeorgiadou SEmulsion ElectrospinningDrug DeliveryCore-ShellLidocaine Hydrochloridehttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2One major technique to fabricate core-shell fibers is emulsion electrospinning due to its simple setup and potential to preserve the bioactivity of a loaded agent within the core. Here, we explore two different emulsion electrospinning approaches to encapsulate a hydrophilic drug, as Lidocaine Hydrochloride (LidHCl), inside a hydrophobic polymer fiber, as Poly-Lactic Acid (PLA) in a core-shell structure. Therefore, we incorporate the drug in the fiber core by means of an aqueous phase containing or lacking a polymeric matrix Polyvinyl Alcohol (PVA) to disperse the drug. We studied the electrospinnability of PLA-based emulsion solutions to produce LidHCl-loaded smooth fibers by varying the applied voltage and the tip-to-collector distance. We evaluated the morphology and chemical properties of emulsion electrospun fibers by field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Finally, we analyzed the drug release profile of both core-shell structures and compared them with blend PLA-LidHCl fiber system. Analysis revealed that emulsion electrospun nanofibers were able to encapsulate the drug within the fibers in both cases. However, PVA matrix inside the core played a key role on the encapsulation and spatial distribution of the drug and therefore on its release. Results suggest that the in vitro release profile of a hydrophilic drug could be tailored by the presence of the inner matrix polymer enabling the production of electrospun fibers with desired features.Fil: Sanchez, Maria Alejandra. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. University of Loughborough; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Rodriguez, Andrea Paola. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Georgiadou S. University of Loughborough; Reino UnidoAustin Publishing Group2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/184670Sanchez, Maria Alejandra; Rodriguez, Andrea Paola; Monsalve, Leandro Nicolas; Georgiadou S; Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods; Austin Publishing Group; Austin Journal of Pharmacology and Therapeutics; 8; 1; 8-2020; 1-82373-6208CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://austinpublishinggroup.com/pharmacology-therapeutics/fulltext/ajpt-v8-id1117.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:25Zoai:ri.conicet.gov.ar:11336/184670instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:26.07CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods |
title |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods |
spellingShingle |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods Sanchez, Maria Alejandra Emulsion Electrospinning Drug Delivery Core-Shell Lidocaine Hydrochloride |
title_short |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods |
title_full |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods |
title_fullStr |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods |
title_full_unstemmed |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods |
title_sort |
Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods |
dc.creator.none.fl_str_mv |
Sanchez, Maria Alejandra Rodriguez, Andrea Paola Monsalve, Leandro Nicolas Georgiadou S |
author |
Sanchez, Maria Alejandra |
author_facet |
Sanchez, Maria Alejandra Rodriguez, Andrea Paola Monsalve, Leandro Nicolas Georgiadou S |
author_role |
author |
author2 |
Rodriguez, Andrea Paola Monsalve, Leandro Nicolas Georgiadou S |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Emulsion Electrospinning Drug Delivery Core-Shell Lidocaine Hydrochloride |
topic |
Emulsion Electrospinning Drug Delivery Core-Shell Lidocaine Hydrochloride |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
One major technique to fabricate core-shell fibers is emulsion electrospinning due to its simple setup and potential to preserve the bioactivity of a loaded agent within the core. Here, we explore two different emulsion electrospinning approaches to encapsulate a hydrophilic drug, as Lidocaine Hydrochloride (LidHCl), inside a hydrophobic polymer fiber, as Poly-Lactic Acid (PLA) in a core-shell structure. Therefore, we incorporate the drug in the fiber core by means of an aqueous phase containing or lacking a polymeric matrix Polyvinyl Alcohol (PVA) to disperse the drug. We studied the electrospinnability of PLA-based emulsion solutions to produce LidHCl-loaded smooth fibers by varying the applied voltage and the tip-to-collector distance. We evaluated the morphology and chemical properties of emulsion electrospun fibers by field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Finally, we analyzed the drug release profile of both core-shell structures and compared them with blend PLA-LidHCl fiber system. Analysis revealed that emulsion electrospun nanofibers were able to encapsulate the drug within the fibers in both cases. However, PVA matrix inside the core played a key role on the encapsulation and spatial distribution of the drug and therefore on its release. Results suggest that the in vitro release profile of a hydrophilic drug could be tailored by the presence of the inner matrix polymer enabling the production of electrospun fibers with desired features. Fil: Sanchez, Maria Alejandra. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. University of Loughborough; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina Fil: Rodriguez, Andrea Paola. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina Fil: Georgiadou S. University of Loughborough; Reino Unido |
description |
One major technique to fabricate core-shell fibers is emulsion electrospinning due to its simple setup and potential to preserve the bioactivity of a loaded agent within the core. Here, we explore two different emulsion electrospinning approaches to encapsulate a hydrophilic drug, as Lidocaine Hydrochloride (LidHCl), inside a hydrophobic polymer fiber, as Poly-Lactic Acid (PLA) in a core-shell structure. Therefore, we incorporate the drug in the fiber core by means of an aqueous phase containing or lacking a polymeric matrix Polyvinyl Alcohol (PVA) to disperse the drug. We studied the electrospinnability of PLA-based emulsion solutions to produce LidHCl-loaded smooth fibers by varying the applied voltage and the tip-to-collector distance. We evaluated the morphology and chemical properties of emulsion electrospun fibers by field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Finally, we analyzed the drug release profile of both core-shell structures and compared them with blend PLA-LidHCl fiber system. Analysis revealed that emulsion electrospun nanofibers were able to encapsulate the drug within the fibers in both cases. However, PVA matrix inside the core played a key role on the encapsulation and spatial distribution of the drug and therefore on its release. Results suggest that the in vitro release profile of a hydrophilic drug could be tailored by the presence of the inner matrix polymer enabling the production of electrospun fibers with desired features. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/184670 Sanchez, Maria Alejandra; Rodriguez, Andrea Paola; Monsalve, Leandro Nicolas; Georgiadou S; Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods; Austin Publishing Group; Austin Journal of Pharmacology and Therapeutics; 8; 1; 8-2020; 1-8 2373-6208 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/184670 |
identifier_str_mv |
Sanchez, Maria Alejandra; Rodriguez, Andrea Paola; Monsalve, Leandro Nicolas; Georgiadou S; Emulsion Electrospinning for Drug Delivery: Two Encapsulation Methods; Austin Publishing Group; Austin Journal of Pharmacology and Therapeutics; 8; 1; 8-2020; 1-8 2373-6208 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://austinpublishinggroup.com/pharmacology-therapeutics/fulltext/ajpt-v8-id1117.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Austin Publishing Group |
publisher.none.fl_str_mv |
Austin Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269343062163456 |
score |
13.13397 |