Strong representation equivalence for compact symmetric spaces of real rank one
- Autores
- Miatello, Roberto Jorge; Lauret, Emilio Agustin
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let G∕K be a simply connected compact irreducible symmetric space of real rank one. For each K-type τ we compare the notions of τ-representation equivalence with τ-isospectrality. We exhibit infinitely many K-types τ so that, for arbitrary discrete subgroups Γ and Γ´ of G, if the multiplicities of λ in the spectra of the Laplace operators acting on sections of the induced τ-vector bundles over Γ∖G∕K and Γ´∖G/K agree for all but finitely many λ, then Γ and Γ´ are τ-representation equivalent in G (i.e., dimHomG(Vπ,L2(Γ∖G))=dimHomG(Vπ,L2(Γ´∖G)) for all π∈?G satisfying HomK(Vτ,Vπ)≠0). In particular, Γ∖G∕K and Γ´∖G/K are τ-isospectral (i.e., the multiplicities agree for all λ).We specially study the case of p-form representations, i.e., the irreducible subrepresentations τ of the representation τp of K on the p-exterior power of the complexified cotangent bundle ∧pT∗CM. We show that for such τ, in most cases τ-isospectrality implies τ-representation equivalence. We construct an explicit counterexample for G/K=SO(4n)/SO(4n−1)≃S4n−1.
Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Lauret, Emilio Agustin. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
ISOSPECTRAL
REPRESENTATION EQUIVALENT
Τ-SPECTRUM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172762
Ver los metadatos del registro completo
| id |
CONICETDig_f1ec947572e2e61cdf2d2082b0573e60 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172762 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Strong representation equivalence for compact symmetric spaces of real rank oneMiatello, Roberto JorgeLauret, Emilio AgustinISOSPECTRALREPRESENTATION EQUIVALENTΤ-SPECTRUMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let G∕K be a simply connected compact irreducible symmetric space of real rank one. For each K-type τ we compare the notions of τ-representation equivalence with τ-isospectrality. We exhibit infinitely many K-types τ so that, for arbitrary discrete subgroups Γ and Γ´ of G, if the multiplicities of λ in the spectra of the Laplace operators acting on sections of the induced τ-vector bundles over Γ∖G∕K and Γ´∖G/K agree for all but finitely many λ, then Γ and Γ´ are τ-representation equivalent in G (i.e., dimHomG(Vπ,L2(Γ∖G))=dimHomG(Vπ,L2(Γ´∖G)) for all π∈?G satisfying HomK(Vτ,Vπ)≠0). In particular, Γ∖G∕K and Γ´∖G/K are τ-isospectral (i.e., the multiplicities agree for all λ).We specially study the case of p-form representations, i.e., the irreducible subrepresentations τ of the representation τp of K on the p-exterior power of the complexified cotangent bundle ∧pT∗CM. We show that for such τ, in most cases τ-isospectrality implies τ-representation equivalence. We construct an explicit counterexample for G/K=SO(4n)/SO(4n−1)≃S4n−1.Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Lauret, Emilio Agustin. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaPacific Journal Mathematics2021-11-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172762Miatello, Roberto Jorge; Lauret, Emilio Agustin; Strong representation equivalence for compact symmetric spaces of real rank one; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 314; 2; 10-11-2021; 333-3730030-87301945-5844CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://msp.org/pjm/2021/314-2/pjm-v314-n2-p05-p.pdfinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1812.09606info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1812.09606info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:45:24Zoai:ri.conicet.gov.ar:11336/172762instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:45:24.64CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Strong representation equivalence for compact symmetric spaces of real rank one |
| title |
Strong representation equivalence for compact symmetric spaces of real rank one |
| spellingShingle |
Strong representation equivalence for compact symmetric spaces of real rank one Miatello, Roberto Jorge ISOSPECTRAL REPRESENTATION EQUIVALENT Τ-SPECTRUM |
| title_short |
Strong representation equivalence for compact symmetric spaces of real rank one |
| title_full |
Strong representation equivalence for compact symmetric spaces of real rank one |
| title_fullStr |
Strong representation equivalence for compact symmetric spaces of real rank one |
| title_full_unstemmed |
Strong representation equivalence for compact symmetric spaces of real rank one |
| title_sort |
Strong representation equivalence for compact symmetric spaces of real rank one |
| dc.creator.none.fl_str_mv |
Miatello, Roberto Jorge Lauret, Emilio Agustin |
| author |
Miatello, Roberto Jorge |
| author_facet |
Miatello, Roberto Jorge Lauret, Emilio Agustin |
| author_role |
author |
| author2 |
Lauret, Emilio Agustin |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
ISOSPECTRAL REPRESENTATION EQUIVALENT Τ-SPECTRUM |
| topic |
ISOSPECTRAL REPRESENTATION EQUIVALENT Τ-SPECTRUM |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let G∕K be a simply connected compact irreducible symmetric space of real rank one. For each K-type τ we compare the notions of τ-representation equivalence with τ-isospectrality. We exhibit infinitely many K-types τ so that, for arbitrary discrete subgroups Γ and Γ´ of G, if the multiplicities of λ in the spectra of the Laplace operators acting on sections of the induced τ-vector bundles over Γ∖G∕K and Γ´∖G/K agree for all but finitely many λ, then Γ and Γ´ are τ-representation equivalent in G (i.e., dimHomG(Vπ,L2(Γ∖G))=dimHomG(Vπ,L2(Γ´∖G)) for all π∈?G satisfying HomK(Vτ,Vπ)≠0). In particular, Γ∖G∕K and Γ´∖G/K are τ-isospectral (i.e., the multiplicities agree for all λ).We specially study the case of p-form representations, i.e., the irreducible subrepresentations τ of the representation τp of K on the p-exterior power of the complexified cotangent bundle ∧pT∗CM. We show that for such τ, in most cases τ-isospectrality implies τ-representation equivalence. We construct an explicit counterexample for G/K=SO(4n)/SO(4n−1)≃S4n−1. Fil: Miatello, Roberto Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Lauret, Emilio Agustin. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
Let G∕K be a simply connected compact irreducible symmetric space of real rank one. For each K-type τ we compare the notions of τ-representation equivalence with τ-isospectrality. We exhibit infinitely many K-types τ so that, for arbitrary discrete subgroups Γ and Γ´ of G, if the multiplicities of λ in the spectra of the Laplace operators acting on sections of the induced τ-vector bundles over Γ∖G∕K and Γ´∖G/K agree for all but finitely many λ, then Γ and Γ´ are τ-representation equivalent in G (i.e., dimHomG(Vπ,L2(Γ∖G))=dimHomG(Vπ,L2(Γ´∖G)) for all π∈?G satisfying HomK(Vτ,Vπ)≠0). In particular, Γ∖G∕K and Γ´∖G/K are τ-isospectral (i.e., the multiplicities agree for all λ).We specially study the case of p-form representations, i.e., the irreducible subrepresentations τ of the representation τp of K on the p-exterior power of the complexified cotangent bundle ∧pT∗CM. We show that for such τ, in most cases τ-isospectrality implies τ-representation equivalence. We construct an explicit counterexample for G/K=SO(4n)/SO(4n−1)≃S4n−1. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-11-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172762 Miatello, Roberto Jorge; Lauret, Emilio Agustin; Strong representation equivalence for compact symmetric spaces of real rank one; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 314; 2; 10-11-2021; 333-373 0030-8730 1945-5844 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/172762 |
| identifier_str_mv |
Miatello, Roberto Jorge; Lauret, Emilio Agustin; Strong representation equivalence for compact symmetric spaces of real rank one; Pacific Journal Mathematics; Pacific Journal Of Mathematics; 314; 2; 10-11-2021; 333-373 0030-8730 1945-5844 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://msp.org/pjm/2021/314-2/pjm-v314-n2-p05-p.pdf info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1812.09606 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1812.09606 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pacific Journal Mathematics |
| publisher.none.fl_str_mv |
Pacific Journal Mathematics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847426423201988608 |
| score |
13.10058 |