Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds
- Autores
- Lauret, Emilio Agustin
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let Γ1 and Γ2 be Bieberbach groups contained in the full isometry group G of Rn. We provethat if the compact flat manifolds Γ1\Rn and Γ2\Rn are strongly isospectral, then the Bieberbachgroups Γ1 and Γ2 are representation equivalent; that is, the right regular representations L2(Γ1\G) and L2(Γ2\G) are unitarily equivalent.
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Representation Equivalent
Strongly Isospectrality
Compact Flat Manifolds - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31945
Ver los metadatos del registro completo
id |
CONICETDig_a30a5093829e73d1c879401e369e8190 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31945 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat ManifoldsLauret, Emilio AgustinRepresentation EquivalentStrongly IsospectralityCompact Flat Manifoldshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let Γ1 and Γ2 be Bieberbach groups contained in the full isometry group G of Rn. We provethat if the compact flat manifolds Γ1\Rn and Γ2\Rn are strongly isospectral, then the Bieberbachgroups Γ1 and Γ2 are representation equivalent; that is, the right regular representations L2(Γ1\G) and L2(Γ2\G) are unitarily equivalent.Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaCanadian Mathematical Soc2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31945Lauret, Emilio Agustin; Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 2; 6-2014; 357-3630008-4395CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CMB-2013-013-2info:eu-repo/semantics/altIdentifier/doi/10.4153/CMB-2013-013-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:58Zoai:ri.conicet.gov.ar:11336/31945instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:58.364CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds |
title |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds |
spellingShingle |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds Lauret, Emilio Agustin Representation Equivalent Strongly Isospectrality Compact Flat Manifolds |
title_short |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds |
title_full |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds |
title_fullStr |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds |
title_full_unstemmed |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds |
title_sort |
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds |
dc.creator.none.fl_str_mv |
Lauret, Emilio Agustin |
author |
Lauret, Emilio Agustin |
author_facet |
Lauret, Emilio Agustin |
author_role |
author |
dc.subject.none.fl_str_mv |
Representation Equivalent Strongly Isospectrality Compact Flat Manifolds |
topic |
Representation Equivalent Strongly Isospectrality Compact Flat Manifolds |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let Γ1 and Γ2 be Bieberbach groups contained in the full isometry group G of Rn. We provethat if the compact flat manifolds Γ1\Rn and Γ2\Rn are strongly isospectral, then the Bieberbachgroups Γ1 and Γ2 are representation equivalent; that is, the right regular representations L2(Γ1\G) and L2(Γ2\G) are unitarily equivalent. Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
Let Γ1 and Γ2 be Bieberbach groups contained in the full isometry group G of Rn. We provethat if the compact flat manifolds Γ1\Rn and Γ2\Rn are strongly isospectral, then the Bieberbachgroups Γ1 and Γ2 are representation equivalent; that is, the right regular representations L2(Γ1\G) and L2(Γ2\G) are unitarily equivalent. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31945 Lauret, Emilio Agustin; Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 2; 6-2014; 357-363 0008-4395 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31945 |
identifier_str_mv |
Lauret, Emilio Agustin; Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 2; 6-2014; 357-363 0008-4395 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CMB-2013-013-2 info:eu-repo/semantics/altIdentifier/doi/10.4153/CMB-2013-013-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Canadian Mathematical Soc |
publisher.none.fl_str_mv |
Canadian Mathematical Soc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269431851384832 |
score |
13.13397 |