Quasi-Neutral Theory of Epidemic Outbreaks
- Autores
- Pinto, Oscar Alejandro; Muñoz, Miguel A.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Some epidemics have been empirically observed to exhibit outbreaks of all possible sizes, i.e., to be scale-free or scale-invariant. Different explanations for this finding have been put forward; among them there is a model for "accidental pathogens" which leads to power-law distributed outbreaks without apparent need of parameter fine tuning. This model has been claimed to be related to self-organized criticality, and its critical properties have been conjectured to be related to directed percolation. Instead, we show that this is a (quasi) neutral model, analogous to those used in Population Genetics and Ecology, with the same critical behavior as the voter-model, i.e. the theory of accidental pathogens is a (quasi)-neutral theory. This analogy allows us to explain all the system phenomenology, including generic scale invariance and the associated scaling exponents, in a parsimonious and simple way.
Fil: Pinto, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Muñoz, Miguel A.. Universidad de Granada. Facultad de Ciencias. Departamento de Electromagnetismo y Física de la Materia. Instituto "Carlos I" de Física Teórica y Computacional; España - Materia
-
Epidemic Outbreaks
accidental pathogens - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/192803
Ver los metadatos del registro completo
id |
CONICETDig_f1eb58e037fb83ad8127a8d4fb760362 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/192803 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quasi-Neutral Theory of Epidemic OutbreaksPinto, Oscar AlejandroMuñoz, Miguel A.Epidemic Outbreaksaccidental pathogenshttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Some epidemics have been empirically observed to exhibit outbreaks of all possible sizes, i.e., to be scale-free or scale-invariant. Different explanations for this finding have been put forward; among them there is a model for "accidental pathogens" which leads to power-law distributed outbreaks without apparent need of parameter fine tuning. This model has been claimed to be related to self-organized criticality, and its critical properties have been conjectured to be related to directed percolation. Instead, we show that this is a (quasi) neutral model, analogous to those used in Population Genetics and Ecology, with the same critical behavior as the voter-model, i.e. the theory of accidental pathogens is a (quasi)-neutral theory. This analogy allows us to explain all the system phenomenology, including generic scale invariance and the associated scaling exponents, in a parsimonious and simple way.Fil: Pinto, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Muñoz, Miguel A.. Universidad de Granada. Facultad de Ciencias. Departamento de Electromagnetismo y Física de la Materia. Instituto "Carlos I" de Física Teórica y Computacional; EspañaPublic Library of Science2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/192803Pinto, Oscar Alejandro; Muñoz, Miguel A.; Quasi-Neutral Theory of Epidemic Outbreaks; Public Library of Science; Plos One; 6; 7; 7-2011; 1-71932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0021946info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0021946info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:39:13Zoai:ri.conicet.gov.ar:11336/192803instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:39:14.095CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quasi-Neutral Theory of Epidemic Outbreaks |
title |
Quasi-Neutral Theory of Epidemic Outbreaks |
spellingShingle |
Quasi-Neutral Theory of Epidemic Outbreaks Pinto, Oscar Alejandro Epidemic Outbreaks accidental pathogens |
title_short |
Quasi-Neutral Theory of Epidemic Outbreaks |
title_full |
Quasi-Neutral Theory of Epidemic Outbreaks |
title_fullStr |
Quasi-Neutral Theory of Epidemic Outbreaks |
title_full_unstemmed |
Quasi-Neutral Theory of Epidemic Outbreaks |
title_sort |
Quasi-Neutral Theory of Epidemic Outbreaks |
dc.creator.none.fl_str_mv |
Pinto, Oscar Alejandro Muñoz, Miguel A. |
author |
Pinto, Oscar Alejandro |
author_facet |
Pinto, Oscar Alejandro Muñoz, Miguel A. |
author_role |
author |
author2 |
Muñoz, Miguel A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Epidemic Outbreaks accidental pathogens |
topic |
Epidemic Outbreaks accidental pathogens |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Some epidemics have been empirically observed to exhibit outbreaks of all possible sizes, i.e., to be scale-free or scale-invariant. Different explanations for this finding have been put forward; among them there is a model for "accidental pathogens" which leads to power-law distributed outbreaks without apparent need of parameter fine tuning. This model has been claimed to be related to self-organized criticality, and its critical properties have been conjectured to be related to directed percolation. Instead, we show that this is a (quasi) neutral model, analogous to those used in Population Genetics and Ecology, with the same critical behavior as the voter-model, i.e. the theory of accidental pathogens is a (quasi)-neutral theory. This analogy allows us to explain all the system phenomenology, including generic scale invariance and the associated scaling exponents, in a parsimonious and simple way. Fil: Pinto, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Muñoz, Miguel A.. Universidad de Granada. Facultad de Ciencias. Departamento de Electromagnetismo y Física de la Materia. Instituto "Carlos I" de Física Teórica y Computacional; España |
description |
Some epidemics have been empirically observed to exhibit outbreaks of all possible sizes, i.e., to be scale-free or scale-invariant. Different explanations for this finding have been put forward; among them there is a model for "accidental pathogens" which leads to power-law distributed outbreaks without apparent need of parameter fine tuning. This model has been claimed to be related to self-organized criticality, and its critical properties have been conjectured to be related to directed percolation. Instead, we show that this is a (quasi) neutral model, analogous to those used in Population Genetics and Ecology, with the same critical behavior as the voter-model, i.e. the theory of accidental pathogens is a (quasi)-neutral theory. This analogy allows us to explain all the system phenomenology, including generic scale invariance and the associated scaling exponents, in a parsimonious and simple way. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/192803 Pinto, Oscar Alejandro; Muñoz, Miguel A.; Quasi-Neutral Theory of Epidemic Outbreaks; Public Library of Science; Plos One; 6; 7; 7-2011; 1-7 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/192803 |
identifier_str_mv |
Pinto, Oscar Alejandro; Muñoz, Miguel A.; Quasi-Neutral Theory of Epidemic Outbreaks; Public Library of Science; Plos One; 6; 7; 7-2011; 1-7 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0021946 info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0021946 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083509326708736 |
score |
13.22299 |