Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
- Autores
- Di Muro, Matias Alberto; Alvarez Zuzek, Lucila Gisele; Havlin, S.; Braunstein, Lidia Adriana
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- How to prevent the spread of human diseases is a great challenge for the scientific community and so far there are many studies in which immunization strategies have been developed. However, these kind of strategies usually do not consider that medical institutes may have limited vaccine resources available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected individual, are vaccinated-with probability ω-and then get infected-with probability β. However, when the fraction of immunized individuals reaches a threshold V L, the vaccination stops, after which only the infection is possible. In the steady state, besides the critical points β c and ω c that separate a non-epidemic from an epidemic phase, we find for a range of V L another transition points, β∗ > β c and ω∗ < ω c, which correspond to a novel discontinuous phase transition. This critical value separates a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to exhaust all the vaccination units. For a disease with fixed β, the vaccination probability ω can be controlled in order to drastically reduce the number of infected individuals, using efficiently the available vaccines. Furthermore, the temporal evolution of the system close to β∗ or ω∗, shows that after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases. But if there are no more vaccines, these few infected individuals could originate a second outbreak, represented by a second peak of infection. This state of apparent calm, could be dangerous since it may lead to misleading conclusions and to an abandon of the strategies to control the disease.
Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Havlin, S.. Bar-ilan University; Israel
Fil: Braunstein, Lidia Adriana. Boston University; Estados Unidos - Materia
-
COMPLEX NETWORKS
EPIDEMIC MODELING
PERCOLATION
SIR MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89195
Ver los metadatos del registro completo
id |
CONICETDig_f950bab7a4fdfbcc39f1ede7adac1b57 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89195 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccinesDi Muro, Matias AlbertoAlvarez Zuzek, Lucila GiseleHavlin, S.Braunstein, Lidia AdrianaCOMPLEX NETWORKSEPIDEMIC MODELINGPERCOLATIONSIR MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1How to prevent the spread of human diseases is a great challenge for the scientific community and so far there are many studies in which immunization strategies have been developed. However, these kind of strategies usually do not consider that medical institutes may have limited vaccine resources available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected individual, are vaccinated-with probability ω-and then get infected-with probability β. However, when the fraction of immunized individuals reaches a threshold V L, the vaccination stops, after which only the infection is possible. In the steady state, besides the critical points β c and ω c that separate a non-epidemic from an epidemic phase, we find for a range of V L another transition points, β∗ > β c and ω∗ < ω c, which correspond to a novel discontinuous phase transition. This critical value separates a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to exhaust all the vaccination units. For a disease with fixed β, the vaccination probability ω can be controlled in order to drastically reduce the number of infected individuals, using efficiently the available vaccines. Furthermore, the temporal evolution of the system close to β∗ or ω∗, shows that after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases. But if there are no more vaccines, these few infected individuals could originate a second outbreak, represented by a second peak of infection. This state of apparent calm, could be dangerous since it may lead to misleading conclusions and to an abandon of the strategies to control the disease.Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Havlin, S.. Bar-ilan University; IsraelFil: Braunstein, Lidia Adriana. Boston University; Estados UnidosIOP Publishing2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89195Di Muro, Matias Alberto; Alvarez Zuzek, Lucila Gisele; Havlin, S.; Braunstein, Lidia Adriana; Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines; IOP Publishing; New Journal of Physics; 20; 8; 8-2018; 830251-8302511367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://stacks.iop.org/1367-2630/20/i=8/a=083025?key=crossref.49d16e6e4e579763ea0bd78651c8d272info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/aad723info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:50Zoai:ri.conicet.gov.ar:11336/89195instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:50.824CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines |
title |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines |
spellingShingle |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines Di Muro, Matias Alberto COMPLEX NETWORKS EPIDEMIC MODELING PERCOLATION SIR MODEL |
title_short |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines |
title_full |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines |
title_fullStr |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines |
title_full_unstemmed |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines |
title_sort |
Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines |
dc.creator.none.fl_str_mv |
Di Muro, Matias Alberto Alvarez Zuzek, Lucila Gisele Havlin, S. Braunstein, Lidia Adriana |
author |
Di Muro, Matias Alberto |
author_facet |
Di Muro, Matias Alberto Alvarez Zuzek, Lucila Gisele Havlin, S. Braunstein, Lidia Adriana |
author_role |
author |
author2 |
Alvarez Zuzek, Lucila Gisele Havlin, S. Braunstein, Lidia Adriana |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
COMPLEX NETWORKS EPIDEMIC MODELING PERCOLATION SIR MODEL |
topic |
COMPLEX NETWORKS EPIDEMIC MODELING PERCOLATION SIR MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
How to prevent the spread of human diseases is a great challenge for the scientific community and so far there are many studies in which immunization strategies have been developed. However, these kind of strategies usually do not consider that medical institutes may have limited vaccine resources available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected individual, are vaccinated-with probability ω-and then get infected-with probability β. However, when the fraction of immunized individuals reaches a threshold V L, the vaccination stops, after which only the infection is possible. In the steady state, besides the critical points β c and ω c that separate a non-epidemic from an epidemic phase, we find for a range of V L another transition points, β∗ > β c and ω∗ < ω c, which correspond to a novel discontinuous phase transition. This critical value separates a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to exhaust all the vaccination units. For a disease with fixed β, the vaccination probability ω can be controlled in order to drastically reduce the number of infected individuals, using efficiently the available vaccines. Furthermore, the temporal evolution of the system close to β∗ or ω∗, shows that after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases. But if there are no more vaccines, these few infected individuals could originate a second outbreak, represented by a second peak of infection. This state of apparent calm, could be dangerous since it may lead to misleading conclusions and to an abandon of the strategies to control the disease. Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Havlin, S.. Bar-ilan University; Israel Fil: Braunstein, Lidia Adriana. Boston University; Estados Unidos |
description |
How to prevent the spread of human diseases is a great challenge for the scientific community and so far there are many studies in which immunization strategies have been developed. However, these kind of strategies usually do not consider that medical institutes may have limited vaccine resources available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected individual, are vaccinated-with probability ω-and then get infected-with probability β. However, when the fraction of immunized individuals reaches a threshold V L, the vaccination stops, after which only the infection is possible. In the steady state, besides the critical points β c and ω c that separate a non-epidemic from an epidemic phase, we find for a range of V L another transition points, β∗ > β c and ω∗ < ω c, which correspond to a novel discontinuous phase transition. This critical value separates a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to exhaust all the vaccination units. For a disease with fixed β, the vaccination probability ω can be controlled in order to drastically reduce the number of infected individuals, using efficiently the available vaccines. Furthermore, the temporal evolution of the system close to β∗ or ω∗, shows that after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases. But if there are no more vaccines, these few infected individuals could originate a second outbreak, represented by a second peak of infection. This state of apparent calm, could be dangerous since it may lead to misleading conclusions and to an abandon of the strategies to control the disease. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89195 Di Muro, Matias Alberto; Alvarez Zuzek, Lucila Gisele; Havlin, S.; Braunstein, Lidia Adriana; Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines; IOP Publishing; New Journal of Physics; 20; 8; 8-2018; 830251-830251 1367-2630 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89195 |
identifier_str_mv |
Di Muro, Matias Alberto; Alvarez Zuzek, Lucila Gisele; Havlin, S.; Braunstein, Lidia Adriana; Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines; IOP Publishing; New Journal of Physics; 20; 8; 8-2018; 830251-830251 1367-2630 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://stacks.iop.org/1367-2630/20/i=8/a=083025?key=crossref.49d16e6e4e579763ea0bd78651c8d272 info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/aad723 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268997994676224 |
score |
13.13397 |