Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines

Autores
Di Muro, Matias Alberto; Alvarez Zuzek, Lucila Gisele; Havlin, S.; Braunstein, Lidia Adriana
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
How to prevent the spread of human diseases is a great challenge for the scientific community and so far there are many studies in which immunization strategies have been developed. However, these kind of strategies usually do not consider that medical institutes may have limited vaccine resources available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected individual, are vaccinated-with probability ω-and then get infected-with probability β. However, when the fraction of immunized individuals reaches a threshold V L, the vaccination stops, after which only the infection is possible. In the steady state, besides the critical points β c and ω c that separate a non-epidemic from an epidemic phase, we find for a range of V L another transition points, β∗ > β c and ω∗ < ω c, which correspond to a novel discontinuous phase transition. This critical value separates a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to exhaust all the vaccination units. For a disease with fixed β, the vaccination probability ω can be controlled in order to drastically reduce the number of infected individuals, using efficiently the available vaccines. Furthermore, the temporal evolution of the system close to β∗ or ω∗, shows that after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases. But if there are no more vaccines, these few infected individuals could originate a second outbreak, represented by a second peak of infection. This state of apparent calm, could be dangerous since it may lead to misleading conclusions and to an abandon of the strategies to control the disease.
Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Havlin, S.. Bar-ilan University; Israel
Fil: Braunstein, Lidia Adriana. Boston University; Estados Unidos
Materia
COMPLEX NETWORKS
EPIDEMIC MODELING
PERCOLATION
SIR MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89195

id CONICETDig_f950bab7a4fdfbcc39f1ede7adac1b57
oai_identifier_str oai:ri.conicet.gov.ar:11336/89195
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiple outbreaks in epidemic spreading with local vaccination and limited vaccinesDi Muro, Matias AlbertoAlvarez Zuzek, Lucila GiseleHavlin, S.Braunstein, Lidia AdrianaCOMPLEX NETWORKSEPIDEMIC MODELINGPERCOLATIONSIR MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1How to prevent the spread of human diseases is a great challenge for the scientific community and so far there are many studies in which immunization strategies have been developed. However, these kind of strategies usually do not consider that medical institutes may have limited vaccine resources available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected individual, are vaccinated-with probability ω-and then get infected-with probability β. However, when the fraction of immunized individuals reaches a threshold V L, the vaccination stops, after which only the infection is possible. In the steady state, besides the critical points β c and ω c that separate a non-epidemic from an epidemic phase, we find for a range of V L another transition points, β∗ > β c and ω∗ < ω c, which correspond to a novel discontinuous phase transition. This critical value separates a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to exhaust all the vaccination units. For a disease with fixed β, the vaccination probability ω can be controlled in order to drastically reduce the number of infected individuals, using efficiently the available vaccines. Furthermore, the temporal evolution of the system close to β∗ or ω∗, shows that after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases. But if there are no more vaccines, these few infected individuals could originate a second outbreak, represented by a second peak of infection. This state of apparent calm, could be dangerous since it may lead to misleading conclusions and to an abandon of the strategies to control the disease.Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Havlin, S.. Bar-ilan University; IsraelFil: Braunstein, Lidia Adriana. Boston University; Estados UnidosIOP Publishing2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89195Di Muro, Matias Alberto; Alvarez Zuzek, Lucila Gisele; Havlin, S.; Braunstein, Lidia Adriana; Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines; IOP Publishing; New Journal of Physics; 20; 8; 8-2018; 830251-8302511367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://stacks.iop.org/1367-2630/20/i=8/a=083025?key=crossref.49d16e6e4e579763ea0bd78651c8d272info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/aad723info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:50Zoai:ri.conicet.gov.ar:11336/89195instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:50.824CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
title Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
spellingShingle Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
Di Muro, Matias Alberto
COMPLEX NETWORKS
EPIDEMIC MODELING
PERCOLATION
SIR MODEL
title_short Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
title_full Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
title_fullStr Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
title_full_unstemmed Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
title_sort Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines
dc.creator.none.fl_str_mv Di Muro, Matias Alberto
Alvarez Zuzek, Lucila Gisele
Havlin, S.
Braunstein, Lidia Adriana
author Di Muro, Matias Alberto
author_facet Di Muro, Matias Alberto
Alvarez Zuzek, Lucila Gisele
Havlin, S.
Braunstein, Lidia Adriana
author_role author
author2 Alvarez Zuzek, Lucila Gisele
Havlin, S.
Braunstein, Lidia Adriana
author2_role author
author
author
dc.subject.none.fl_str_mv COMPLEX NETWORKS
EPIDEMIC MODELING
PERCOLATION
SIR MODEL
topic COMPLEX NETWORKS
EPIDEMIC MODELING
PERCOLATION
SIR MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv How to prevent the spread of human diseases is a great challenge for the scientific community and so far there are many studies in which immunization strategies have been developed. However, these kind of strategies usually do not consider that medical institutes may have limited vaccine resources available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected individual, are vaccinated-with probability ω-and then get infected-with probability β. However, when the fraction of immunized individuals reaches a threshold V L, the vaccination stops, after which only the infection is possible. In the steady state, besides the critical points β c and ω c that separate a non-epidemic from an epidemic phase, we find for a range of V L another transition points, β∗ > β c and ω∗ < ω c, which correspond to a novel discontinuous phase transition. This critical value separates a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to exhaust all the vaccination units. For a disease with fixed β, the vaccination probability ω can be controlled in order to drastically reduce the number of infected individuals, using efficiently the available vaccines. Furthermore, the temporal evolution of the system close to β∗ or ω∗, shows that after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases. But if there are no more vaccines, these few infected individuals could originate a second outbreak, represented by a second peak of infection. This state of apparent calm, could be dangerous since it may lead to misleading conclusions and to an abandon of the strategies to control the disease.
Fil: Di Muro, Matias Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Havlin, S.. Bar-ilan University; Israel
Fil: Braunstein, Lidia Adriana. Boston University; Estados Unidos
description How to prevent the spread of human diseases is a great challenge for the scientific community and so far there are many studies in which immunization strategies have been developed. However, these kind of strategies usually do not consider that medical institutes may have limited vaccine resources available. In this manuscript, we explore the susceptible-infected-recovered model with local dynamic vaccination, and considering limited vaccines. In this model, susceptibles in contact with an infected individual, are vaccinated-with probability ω-and then get infected-with probability β. However, when the fraction of immunized individuals reaches a threshold V L, the vaccination stops, after which only the infection is possible. In the steady state, besides the critical points β c and ω c that separate a non-epidemic from an epidemic phase, we find for a range of V L another transition points, β∗ > β c and ω∗ < ω c, which correspond to a novel discontinuous phase transition. This critical value separates a phase where the amount of vaccines is sufficient, from a phase where the disease is strong enough to exhaust all the vaccination units. For a disease with fixed β, the vaccination probability ω can be controlled in order to drastically reduce the number of infected individuals, using efficiently the available vaccines. Furthermore, the temporal evolution of the system close to β∗ or ω∗, shows that after a peak of infection the system enters into a quasi-stationary state, with only a few infected cases. But if there are no more vaccines, these few infected individuals could originate a second outbreak, represented by a second peak of infection. This state of apparent calm, could be dangerous since it may lead to misleading conclusions and to an abandon of the strategies to control the disease.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89195
Di Muro, Matias Alberto; Alvarez Zuzek, Lucila Gisele; Havlin, S.; Braunstein, Lidia Adriana; Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines; IOP Publishing; New Journal of Physics; 20; 8; 8-2018; 830251-830251
1367-2630
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89195
identifier_str_mv Di Muro, Matias Alberto; Alvarez Zuzek, Lucila Gisele; Havlin, S.; Braunstein, Lidia Adriana; Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines; IOP Publishing; New Journal of Physics; 20; 8; 8-2018; 830251-830251
1367-2630
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://stacks.iop.org/1367-2630/20/i=8/a=083025?key=crossref.49d16e6e4e579763ea0bd78651c8d272
info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/aad723
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268997994676224
score 13.13397