Epidemic model with isolation in multilayer networks

Autores
Alvarez Zuzek, Lucila Gisele; Stanley, H. E.; Braunstein, L. A.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Susceptible-Infected-Recovered ($SIR$) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the $SIR$ model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter $w$ to measure the effect of quarantining infected individuals from both layers during an isolation period $t_w$. We call this process the Susceptible-Infected-Isolated-Recovered ($SI_IR$) model. Using the framework of link percolation we find that isolation reduces the critical epidemic threshold of the disease because} the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and t_w. When the isolation period is maximum there is a critical threshold for $w$ above which the disease never becomes an epidemic. We also find that epidemic models, like $SIR$ overestimate the critical epidemic threshold. We simulate the process and found an excellent agreement with the theoretical results.
Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Stanley, H. E.. Boston University; Estados Unidos
Fil: Braunstein, L. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Boston University; Estados Unidos
Materia
Complex Netorks
Multilayer Networks
Epidemic Models
Percolation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8221

id CONICETDig_3aeebc3e6764258d07070df7c8625924
oai_identifier_str oai:ri.conicet.gov.ar:11336/8221
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Epidemic model with isolation in multilayer networksAlvarez Zuzek, Lucila GiseleStanley, H. E.Braunstein, L. A.Complex NetorksMultilayer NetworksEpidemic ModelsPercolationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Susceptible-Infected-Recovered ($SIR$) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the $SIR$ model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter $w$ to measure the effect of quarantining infected individuals from both layers during an isolation period $t_w$. We call this process the Susceptible-Infected-Isolated-Recovered ($SI_IR$) model. Using the framework of link percolation we find that isolation reduces the critical epidemic threshold of the disease because} the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and t_w. When the isolation period is maximum there is a critical threshold for $w$ above which the disease never becomes an epidemic. We also find that epidemic models, like $SIR$ overestimate the critical epidemic threshold. We simulate the process and found an excellent agreement with the theoretical results.Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Stanley, H. E.. Boston University; Estados UnidosFil: Braunstein, L. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Boston University; Estados UnidosNature Publishing Group2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8221Alvarez Zuzek, Lucila Gisele; Stanley, H. E.; Braunstein, L. A.; Epidemic model with isolation in multilayer networks; Nature Publishing Group; Scientific Reports; 5; 1215; 7-2015; 1-72045-2322enginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep12151info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502411/info:eu-repo/semantics/altIdentifier/doi/10.1038/srep12151info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.1430info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:02Zoai:ri.conicet.gov.ar:11336/8221instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:02.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Epidemic model with isolation in multilayer networks
title Epidemic model with isolation in multilayer networks
spellingShingle Epidemic model with isolation in multilayer networks
Alvarez Zuzek, Lucila Gisele
Complex Netorks
Multilayer Networks
Epidemic Models
Percolation
title_short Epidemic model with isolation in multilayer networks
title_full Epidemic model with isolation in multilayer networks
title_fullStr Epidemic model with isolation in multilayer networks
title_full_unstemmed Epidemic model with isolation in multilayer networks
title_sort Epidemic model with isolation in multilayer networks
dc.creator.none.fl_str_mv Alvarez Zuzek, Lucila Gisele
Stanley, H. E.
Braunstein, L. A.
author Alvarez Zuzek, Lucila Gisele
author_facet Alvarez Zuzek, Lucila Gisele
Stanley, H. E.
Braunstein, L. A.
author_role author
author2 Stanley, H. E.
Braunstein, L. A.
author2_role author
author
dc.subject.none.fl_str_mv Complex Netorks
Multilayer Networks
Epidemic Models
Percolation
topic Complex Netorks
Multilayer Networks
Epidemic Models
Percolation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Susceptible-Infected-Recovered ($SIR$) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the $SIR$ model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter $w$ to measure the effect of quarantining infected individuals from both layers during an isolation period $t_w$. We call this process the Susceptible-Infected-Isolated-Recovered ($SI_IR$) model. Using the framework of link percolation we find that isolation reduces the critical epidemic threshold of the disease because} the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and t_w. When the isolation period is maximum there is a critical threshold for $w$ above which the disease never becomes an epidemic. We also find that epidemic models, like $SIR$ overestimate the critical epidemic threshold. We simulate the process and found an excellent agreement with the theoretical results.
Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Stanley, H. E.. Boston University; Estados Unidos
Fil: Braunstein, L. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Boston University; Estados Unidos
description The Susceptible-Infected-Recovered ($SIR$) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the $SIR$ model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter $w$ to measure the effect of quarantining infected individuals from both layers during an isolation period $t_w$. We call this process the Susceptible-Infected-Isolated-Recovered ($SI_IR$) model. Using the framework of link percolation we find that isolation reduces the critical epidemic threshold of the disease because} the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and t_w. When the isolation period is maximum there is a critical threshold for $w$ above which the disease never becomes an epidemic. We also find that epidemic models, like $SIR$ overestimate the critical epidemic threshold. We simulate the process and found an excellent agreement with the theoretical results.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8221
Alvarez Zuzek, Lucila Gisele; Stanley, H. E.; Braunstein, L. A.; Epidemic model with isolation in multilayer networks; Nature Publishing Group; Scientific Reports; 5; 1215; 7-2015; 1-7
2045-2322
url http://hdl.handle.net/11336/8221
identifier_str_mv Alvarez Zuzek, Lucila Gisele; Stanley, H. E.; Braunstein, L. A.; Epidemic model with isolation in multilayer networks; Nature Publishing Group; Scientific Reports; 5; 1215; 7-2015; 1-7
2045-2322
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep12151
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502411/
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep12151
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.1430
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269779664044032
score 13.13397