Epidemic model with isolation in multilayer networks
- Autores
- Alvarez Zuzek, Lucila Gisele; Stanley, H. E.; Braunstein, L. A.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Susceptible-Infected-Recovered ($SIR$) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the $SIR$ model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter $w$ to measure the effect of quarantining infected individuals from both layers during an isolation period $t_w$. We call this process the Susceptible-Infected-Isolated-Recovered ($SI_IR$) model. Using the framework of link percolation we find that isolation reduces the critical epidemic threshold of the disease because} the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and t_w. When the isolation period is maximum there is a critical threshold for $w$ above which the disease never becomes an epidemic. We also find that epidemic models, like $SIR$ overestimate the critical epidemic threshold. We simulate the process and found an excellent agreement with the theoretical results.
Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Stanley, H. E.. Boston University; Estados Unidos
Fil: Braunstein, L. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Boston University; Estados Unidos - Materia
-
Complex Netorks
Multilayer Networks
Epidemic Models
Percolation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8221
Ver los metadatos del registro completo
id |
CONICETDig_3aeebc3e6764258d07070df7c8625924 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8221 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Epidemic model with isolation in multilayer networksAlvarez Zuzek, Lucila GiseleStanley, H. E.Braunstein, L. A.Complex NetorksMultilayer NetworksEpidemic ModelsPercolationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Susceptible-Infected-Recovered ($SIR$) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the $SIR$ model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter $w$ to measure the effect of quarantining infected individuals from both layers during an isolation period $t_w$. We call this process the Susceptible-Infected-Isolated-Recovered ($SI_IR$) model. Using the framework of link percolation we find that isolation reduces the critical epidemic threshold of the disease because} the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and t_w. When the isolation period is maximum there is a critical threshold for $w$ above which the disease never becomes an epidemic. We also find that epidemic models, like $SIR$ overestimate the critical epidemic threshold. We simulate the process and found an excellent agreement with the theoretical results.Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Stanley, H. E.. Boston University; Estados UnidosFil: Braunstein, L. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Boston University; Estados UnidosNature Publishing Group2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8221Alvarez Zuzek, Lucila Gisele; Stanley, H. E.; Braunstein, L. A.; Epidemic model with isolation in multilayer networks; Nature Publishing Group; Scientific Reports; 5; 1215; 7-2015; 1-72045-2322enginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep12151info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502411/info:eu-repo/semantics/altIdentifier/doi/10.1038/srep12151info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.1430info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:02Zoai:ri.conicet.gov.ar:11336/8221instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:02.627CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Epidemic model with isolation in multilayer networks |
title |
Epidemic model with isolation in multilayer networks |
spellingShingle |
Epidemic model with isolation in multilayer networks Alvarez Zuzek, Lucila Gisele Complex Netorks Multilayer Networks Epidemic Models Percolation |
title_short |
Epidemic model with isolation in multilayer networks |
title_full |
Epidemic model with isolation in multilayer networks |
title_fullStr |
Epidemic model with isolation in multilayer networks |
title_full_unstemmed |
Epidemic model with isolation in multilayer networks |
title_sort |
Epidemic model with isolation in multilayer networks |
dc.creator.none.fl_str_mv |
Alvarez Zuzek, Lucila Gisele Stanley, H. E. Braunstein, L. A. |
author |
Alvarez Zuzek, Lucila Gisele |
author_facet |
Alvarez Zuzek, Lucila Gisele Stanley, H. E. Braunstein, L. A. |
author_role |
author |
author2 |
Stanley, H. E. Braunstein, L. A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Complex Netorks Multilayer Networks Epidemic Models Percolation |
topic |
Complex Netorks Multilayer Networks Epidemic Models Percolation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Susceptible-Infected-Recovered ($SIR$) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the $SIR$ model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter $w$ to measure the effect of quarantining infected individuals from both layers during an isolation period $t_w$. We call this process the Susceptible-Infected-Isolated-Recovered ($SI_IR$) model. Using the framework of link percolation we find that isolation reduces the critical epidemic threshold of the disease because} the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and t_w. When the isolation period is maximum there is a critical threshold for $w$ above which the disease never becomes an epidemic. We also find that epidemic models, like $SIR$ overestimate the critical epidemic threshold. We simulate the process and found an excellent agreement with the theoretical results. Fil: Alvarez Zuzek, Lucila Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Stanley, H. E.. Boston University; Estados Unidos Fil: Braunstein, L. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Boston University; Estados Unidos |
description |
The Susceptible-Infected-Recovered ($SIR$) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the $SIR$ model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter $w$ to measure the effect of quarantining infected individuals from both layers during an isolation period $t_w$. We call this process the Susceptible-Infected-Isolated-Recovered ($SI_IR$) model. Using the framework of link percolation we find that isolation reduces the critical epidemic threshold of the disease because} the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and t_w. When the isolation period is maximum there is a critical threshold for $w$ above which the disease never becomes an epidemic. We also find that epidemic models, like $SIR$ overestimate the critical epidemic threshold. We simulate the process and found an excellent agreement with the theoretical results. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8221 Alvarez Zuzek, Lucila Gisele; Stanley, H. E.; Braunstein, L. A.; Epidemic model with isolation in multilayer networks; Nature Publishing Group; Scientific Reports; 5; 1215; 7-2015; 1-7 2045-2322 |
url |
http://hdl.handle.net/11336/8221 |
identifier_str_mv |
Alvarez Zuzek, Lucila Gisele; Stanley, H. E.; Braunstein, L. A.; Epidemic model with isolation in multilayer networks; Nature Publishing Group; Scientific Reports; 5; 1215; 7-2015; 1-7 2045-2322 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/srep12151 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502411/ info:eu-repo/semantics/altIdentifier/doi/10.1038/srep12151 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1412.1430 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269779664044032 |
score |
13.13397 |