An iterative method for a second order problem with nonlinear two-point boundary conditions
- Autores
- Amster, Pablo Gustavo; Cárdenas Alzate, Pedro Pablo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A semi-linear second order ODE under a nonlinear two-point boundary condition is considered. Under appropriate conditions on the nonlinear term of the equation, we define a two-dimensional shooting argument which allows to obtain solutions for some specific situations by the use of Poincaré-Miranda?s theorem. Finally, we apply this result combined with the method of upper and lower solutions and develop an iterative sequence that converges to a solution of the problem.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cárdenas Alzate, Pedro Pablo. Universidad Tecnológica de Pereira; Colombia - Materia
-
Nonlinear two-point boundary conditions
Upper and lower solutions
Iterative methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14916
Ver los metadatos del registro completo
id |
CONICETDig_f16e8f68b1a30e26f0afaf949e8c28e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14916 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An iterative method for a second order problem with nonlinear two-point boundary conditionsAmster, Pablo GustavoCárdenas Alzate, Pedro PabloNonlinear two-point boundary conditionsUpper and lower solutionsIterative methodshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A semi-linear second order ODE under a nonlinear two-point boundary condition is considered. Under appropriate conditions on the nonlinear term of the equation, we define a two-dimensional shooting argument which allows to obtain solutions for some specific situations by the use of Poincaré-Miranda?s theorem. Finally, we apply this result combined with the method of upper and lower solutions and develop an iterative sequence that converges to a solution of the problem.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cárdenas Alzate, Pedro Pablo. Universidad Tecnológica de Pereira; ColombiaCorporación Escuela Regional de Matemáticas ERM2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14916Amster, Pablo Gustavo; Cárdenas Alzate, Pedro Pablo; An iterative method for a second order problem with nonlinear two-point boundary conditions; Corporación Escuela Regional de Matemáticas ERM; Matemáticas: Enseñanza Universitaria; XIX; 2; 12-2011; 3-140120-6788enginfo:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=46822255001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:55Zoai:ri.conicet.gov.ar:11336/14916instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:56.089CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An iterative method for a second order problem with nonlinear two-point boundary conditions |
title |
An iterative method for a second order problem with nonlinear two-point boundary conditions |
spellingShingle |
An iterative method for a second order problem with nonlinear two-point boundary conditions Amster, Pablo Gustavo Nonlinear two-point boundary conditions Upper and lower solutions Iterative methods |
title_short |
An iterative method for a second order problem with nonlinear two-point boundary conditions |
title_full |
An iterative method for a second order problem with nonlinear two-point boundary conditions |
title_fullStr |
An iterative method for a second order problem with nonlinear two-point boundary conditions |
title_full_unstemmed |
An iterative method for a second order problem with nonlinear two-point boundary conditions |
title_sort |
An iterative method for a second order problem with nonlinear two-point boundary conditions |
dc.creator.none.fl_str_mv |
Amster, Pablo Gustavo Cárdenas Alzate, Pedro Pablo |
author |
Amster, Pablo Gustavo |
author_facet |
Amster, Pablo Gustavo Cárdenas Alzate, Pedro Pablo |
author_role |
author |
author2 |
Cárdenas Alzate, Pedro Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Nonlinear two-point boundary conditions Upper and lower solutions Iterative methods |
topic |
Nonlinear two-point boundary conditions Upper and lower solutions Iterative methods |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A semi-linear second order ODE under a nonlinear two-point boundary condition is considered. Under appropriate conditions on the nonlinear term of the equation, we define a two-dimensional shooting argument which allows to obtain solutions for some specific situations by the use of Poincaré-Miranda?s theorem. Finally, we apply this result combined with the method of upper and lower solutions and develop an iterative sequence that converges to a solution of the problem. Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Cárdenas Alzate, Pedro Pablo. Universidad Tecnológica de Pereira; Colombia |
description |
A semi-linear second order ODE under a nonlinear two-point boundary condition is considered. Under appropriate conditions on the nonlinear term of the equation, we define a two-dimensional shooting argument which allows to obtain solutions for some specific situations by the use of Poincaré-Miranda?s theorem. Finally, we apply this result combined with the method of upper and lower solutions and develop an iterative sequence that converges to a solution of the problem. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14916 Amster, Pablo Gustavo; Cárdenas Alzate, Pedro Pablo; An iterative method for a second order problem with nonlinear two-point boundary conditions; Corporación Escuela Regional de Matemáticas ERM; Matemáticas: Enseñanza Universitaria; XIX; 2; 12-2011; 3-14 0120-6788 |
url |
http://hdl.handle.net/11336/14916 |
identifier_str_mv |
Amster, Pablo Gustavo; Cárdenas Alzate, Pedro Pablo; An iterative method for a second order problem with nonlinear two-point boundary conditions; Corporación Escuela Regional de Matemáticas ERM; Matemáticas: Enseñanza Universitaria; XIX; 2; 12-2011; 3-14 0120-6788 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.redalyc.org/articulo.oa?id=46822255001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Corporación Escuela Regional de Matemáticas ERM |
publisher.none.fl_str_mv |
Corporación Escuela Regional de Matemáticas ERM |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268698105085952 |
score |
13.13397 |