Two iterative schemes for an H-system

Autores
Amster, Pablo Gustavo; Mariani, María Cristina
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Two iterative schemes for the solution of an H-system with Dirichlet boundary data for a revolution surface are studied: a Newton imbedding type procedure, which yields the local quadratic convergence of the iteration and a more simple scheme based on the method of upper and lower solutions.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Mariani, María Cristina. New Mexico State University Las Cruces; México
Materia
H-SYSTEMS
NEWTON IMBEDDING
UPPER AND LOWER SOLUTIONS
ITERATIVE METHODS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151167

id CONICETDig_0949bac7b887fada5e8fd9ad03bd9ea1
oai_identifier_str oai:ri.conicet.gov.ar:11336/151167
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two iterative schemes for an H-systemAmster, Pablo GustavoMariani, María CristinaH-SYSTEMSNEWTON IMBEDDINGUPPER AND LOWER SOLUTIONSITERATIVE METHODShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Two iterative schemes for the solution of an H-system with Dirichlet boundary data for a revolution surface are studied: a Newton imbedding type procedure, which yields the local quadratic convergence of the iteration and a more simple scheme based on the method of upper and lower solutions.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Mariani, María Cristina. New Mexico State University Las Cruces; MéxicoVictoria University2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151167Amster, Pablo Gustavo; Mariani, María Cristina; Two iterative schemes for an H-system; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 6; 1; 12-2005; 1-71443-5756CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/JIPAM/article474.html?sid=474info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:03Zoai:ri.conicet.gov.ar:11336/151167instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:03.998CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two iterative schemes for an H-system
title Two iterative schemes for an H-system
spellingShingle Two iterative schemes for an H-system
Amster, Pablo Gustavo
H-SYSTEMS
NEWTON IMBEDDING
UPPER AND LOWER SOLUTIONS
ITERATIVE METHODS
title_short Two iterative schemes for an H-system
title_full Two iterative schemes for an H-system
title_fullStr Two iterative schemes for an H-system
title_full_unstemmed Two iterative schemes for an H-system
title_sort Two iterative schemes for an H-system
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Mariani, María Cristina
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Mariani, María Cristina
author_role author
author2 Mariani, María Cristina
author2_role author
dc.subject.none.fl_str_mv H-SYSTEMS
NEWTON IMBEDDING
UPPER AND LOWER SOLUTIONS
ITERATIVE METHODS
topic H-SYSTEMS
NEWTON IMBEDDING
UPPER AND LOWER SOLUTIONS
ITERATIVE METHODS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Two iterative schemes for the solution of an H-system with Dirichlet boundary data for a revolution surface are studied: a Newton imbedding type procedure, which yields the local quadratic convergence of the iteration and a more simple scheme based on the method of upper and lower solutions.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Mariani, María Cristina. New Mexico State University Las Cruces; México
description Two iterative schemes for the solution of an H-system with Dirichlet boundary data for a revolution surface are studied: a Newton imbedding type procedure, which yields the local quadratic convergence of the iteration and a more simple scheme based on the method of upper and lower solutions.
publishDate 2005
dc.date.none.fl_str_mv 2005-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151167
Amster, Pablo Gustavo; Mariani, María Cristina; Two iterative schemes for an H-system; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 6; 1; 12-2005; 1-7
1443-5756
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151167
identifier_str_mv Amster, Pablo Gustavo; Mariani, María Cristina; Two iterative schemes for an H-system; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 6; 1; 12-2005; 1-7
1443-5756
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/JIPAM/article474.html?sid=474
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Victoria University
publisher.none.fl_str_mv Victoria University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979856062611456
score 12.993085