Intuitionistic Hypothetical Logic of Proof

Autores
Steren, Gabriela; Bonelli, Eduardo Augusto
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of modal logic S4 in which the assertion ✷A is replaced by [[s]]A whose intended reading is “s is a proof of A”. We first introduce a natural deduction presentation based on hypothetical judgements and then its term assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore its applications in programming languages.
Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Curry-Howard
Logic of Proofs
Lambda Calculus
Programming Languages
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/28208

id CONICETDig_f0c98340bc494d086260c96471cdb5f3
oai_identifier_str oai:ri.conicet.gov.ar:11336/28208
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Intuitionistic Hypothetical Logic of ProofSteren, GabrielaBonelli, Eduardo AugustoCurry-HowardLogic of ProofsLambda CalculusProgramming Languageshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of modal logic S4 in which the assertion ✷A is replaced by [[s]]A whose intended reading is “s is a proof of A”. We first introduce a natural deduction presentation based on hypothetical judgements and then its term assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore its applications in programming languages.Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/28208Steren, Gabriela; Bonelli, Eduardo Augusto; Intuitionistic Hypothetical Logic of Proof; Elsevier Science; Electronic Notes in Theoretical Computer Science; 300; 10-2013; 89-1031571-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2013.12.013info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571066113000935info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:57Zoai:ri.conicet.gov.ar:11336/28208instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:57.618CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Intuitionistic Hypothetical Logic of Proof
title Intuitionistic Hypothetical Logic of Proof
spellingShingle Intuitionistic Hypothetical Logic of Proof
Steren, Gabriela
Curry-Howard
Logic of Proofs
Lambda Calculus
Programming Languages
title_short Intuitionistic Hypothetical Logic of Proof
title_full Intuitionistic Hypothetical Logic of Proof
title_fullStr Intuitionistic Hypothetical Logic of Proof
title_full_unstemmed Intuitionistic Hypothetical Logic of Proof
title_sort Intuitionistic Hypothetical Logic of Proof
dc.creator.none.fl_str_mv Steren, Gabriela
Bonelli, Eduardo Augusto
author Steren, Gabriela
author_facet Steren, Gabriela
Bonelli, Eduardo Augusto
author_role author
author2 Bonelli, Eduardo Augusto
author2_role author
dc.subject.none.fl_str_mv Curry-Howard
Logic of Proofs
Lambda Calculus
Programming Languages
topic Curry-Howard
Logic of Proofs
Lambda Calculus
Programming Languages
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of modal logic S4 in which the assertion ✷A is replaced by [[s]]A whose intended reading is “s is a proof of A”. We first introduce a natural deduction presentation based on hypothetical judgements and then its term assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore its applications in programming languages.
Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of modal logic S4 in which the assertion ✷A is replaced by [[s]]A whose intended reading is “s is a proof of A”. We first introduce a natural deduction presentation based on hypothetical judgements and then its term assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore its applications in programming languages.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/28208
Steren, Gabriela; Bonelli, Eduardo Augusto; Intuitionistic Hypothetical Logic of Proof; Elsevier Science; Electronic Notes in Theoretical Computer Science; 300; 10-2013; 89-103
1571-0661
CONICET Digital
CONICET
url http://hdl.handle.net/11336/28208
identifier_str_mv Steren, Gabriela; Bonelli, Eduardo Augusto; Intuitionistic Hypothetical Logic of Proof; Elsevier Science; Electronic Notes in Theoretical Computer Science; 300; 10-2013; 89-103
1571-0661
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2013.12.013
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571066113000935
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980925956161536
score 12.993085