Intuitionistic Hypothetical Logic of Proof
- Autores
- Steren, Gabriela; Bonelli, Eduardo Augusto
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of modal logic S4 in which the assertion ✷A is replaced by [[s]]A whose intended reading is “s is a proof of A”. We first introduce a natural deduction presentation based on hypothetical judgements and then its term assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore its applications in programming languages.
Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Curry-Howard
Logic of Proofs
Lambda Calculus
Programming Languages - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/28208
Ver los metadatos del registro completo
id |
CONICETDig_f0c98340bc494d086260c96471cdb5f3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/28208 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Intuitionistic Hypothetical Logic of ProofSteren, GabrielaBonelli, Eduardo AugustoCurry-HowardLogic of ProofsLambda CalculusProgramming Languageshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of modal logic S4 in which the assertion ✷A is replaced by [[s]]A whose intended reading is “s is a proof of A”. We first introduce a natural deduction presentation based on hypothetical judgements and then its term assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore its applications in programming languages.Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/28208Steren, Gabriela; Bonelli, Eduardo Augusto; Intuitionistic Hypothetical Logic of Proof; Elsevier Science; Electronic Notes in Theoretical Computer Science; 300; 10-2013; 89-1031571-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2013.12.013info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571066113000935info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:57Zoai:ri.conicet.gov.ar:11336/28208instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:57.618CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Intuitionistic Hypothetical Logic of Proof |
title |
Intuitionistic Hypothetical Logic of Proof |
spellingShingle |
Intuitionistic Hypothetical Logic of Proof Steren, Gabriela Curry-Howard Logic of Proofs Lambda Calculus Programming Languages |
title_short |
Intuitionistic Hypothetical Logic of Proof |
title_full |
Intuitionistic Hypothetical Logic of Proof |
title_fullStr |
Intuitionistic Hypothetical Logic of Proof |
title_full_unstemmed |
Intuitionistic Hypothetical Logic of Proof |
title_sort |
Intuitionistic Hypothetical Logic of Proof |
dc.creator.none.fl_str_mv |
Steren, Gabriela Bonelli, Eduardo Augusto |
author |
Steren, Gabriela |
author_facet |
Steren, Gabriela Bonelli, Eduardo Augusto |
author_role |
author |
author2 |
Bonelli, Eduardo Augusto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Curry-Howard Logic of Proofs Lambda Calculus Programming Languages |
topic |
Curry-Howard Logic of Proofs Lambda Calculus Programming Languages |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of modal logic S4 in which the assertion ✷A is replaced by [[s]]A whose intended reading is “s is a proof of A”. We first introduce a natural deduction presentation based on hypothetical judgements and then its term assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore its applications in programming languages. Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study a term assignment for an intuitonistic fragment of the Logic of Proofs (LP). LP is a refinement of modal logic S4 in which the assertion ✷A is replaced by [[s]]A whose intended reading is “s is a proof of A”. We first introduce a natural deduction presentation based on hypothetical judgements and then its term assignment, which yields a confluent and strongly normalising typed lambda calculus λIHLP. This work is part of an ongoing effort towards reformulating LP in terms of hypothetical reasoning in order to explore its applications in programming languages. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/28208 Steren, Gabriela; Bonelli, Eduardo Augusto; Intuitionistic Hypothetical Logic of Proof; Elsevier Science; Electronic Notes in Theoretical Computer Science; 300; 10-2013; 89-103 1571-0661 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/28208 |
identifier_str_mv |
Steren, Gabriela; Bonelli, Eduardo Augusto; Intuitionistic Hypothetical Logic of Proof; Elsevier Science; Electronic Notes in Theoretical Computer Science; 300; 10-2013; 89-103 1571-0661 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2013.12.013 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571066113000935 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980925956161536 |
score |
12.993085 |