Justification logic and audited computation

Autores
Bavera, Francisco Pedro; Bonelli, Eduardo Augusto
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Justification Logic ( JL ) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by justifications: the formula 〚s〛A states that s is a ‘reason’ for knowing/believing A . We study the computational interpretation of JL via the Curry–Howard isomorphism in which the modality 〚s〛A is interpreted as: s is a type derivation justifying the validity of A . The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them. This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is history-aware.
Fil: Bavera, Francisco Pedro. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes; Argentina. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Modal Logic
Justification Logic
Curry Howard
Lambda Calculus
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/41571

id CONICETDig_f7b1ade652491ed1595035bb97db40c4
oai_identifier_str oai:ri.conicet.gov.ar:11336/41571
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Justification logic and audited computationBavera, Francisco PedroBonelli, Eduardo AugustoModal LogicJustification LogicCurry HowardLambda Calculushttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Justification Logic ( JL ) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by justifications: the formula 〚s〛A states that s is a ‘reason’ for knowing/believing A . We study the computational interpretation of JL via the Curry–Howard isomorphism in which the modality 〚s〛A is interpreted as: s is a type derivation justifying the validity of A . The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them. This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is history-aware.Fil: Bavera, Francisco Pedro. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes; Argentina. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41571Bavera, Francisco Pedro; Bonelli, Eduardo Augusto; Justification logic and audited computation ; Oxford University Press; Journal of Logic and Computation; 6-2015; 1-260955-792XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi//10.1093/logcom/exv037info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/advance-article/doi/10.1093/logcom/exv037/2917815info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:51:06Zoai:ri.conicet.gov.ar:11336/41571instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:51:07.239CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Justification logic and audited computation
title Justification logic and audited computation
spellingShingle Justification logic and audited computation
Bavera, Francisco Pedro
Modal Logic
Justification Logic
Curry Howard
Lambda Calculus
title_short Justification logic and audited computation
title_full Justification logic and audited computation
title_fullStr Justification logic and audited computation
title_full_unstemmed Justification logic and audited computation
title_sort Justification logic and audited computation
dc.creator.none.fl_str_mv Bavera, Francisco Pedro
Bonelli, Eduardo Augusto
author Bavera, Francisco Pedro
author_facet Bavera, Francisco Pedro
Bonelli, Eduardo Augusto
author_role author
author2 Bonelli, Eduardo Augusto
author2_role author
dc.subject.none.fl_str_mv Modal Logic
Justification Logic
Curry Howard
Lambda Calculus
topic Modal Logic
Justification Logic
Curry Howard
Lambda Calculus
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Justification Logic ( JL ) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by justifications: the formula 〚s〛A states that s is a ‘reason’ for knowing/believing A . We study the computational interpretation of JL via the Curry–Howard isomorphism in which the modality 〚s〛A is interpreted as: s is a type derivation justifying the validity of A . The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them. This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is history-aware.
Fil: Bavera, Francisco Pedro. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes; Argentina. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Justification Logic ( JL ) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by justifications: the formula 〚s〛A states that s is a ‘reason’ for knowing/believing A . We study the computational interpretation of JL via the Curry–Howard isomorphism in which the modality 〚s〛A is interpreted as: s is a type derivation justifying the validity of A . The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them. This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is history-aware.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/41571
Bavera, Francisco Pedro; Bonelli, Eduardo Augusto; Justification logic and audited computation ; Oxford University Press; Journal of Logic and Computation; 6-2015; 1-26
0955-792X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/41571
identifier_str_mv Bavera, Francisco Pedro; Bonelli, Eduardo Augusto; Justification logic and audited computation ; Oxford University Press; Journal of Logic and Computation; 6-2015; 1-26
0955-792X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi//10.1093/logcom/exv037
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/advance-article/doi/10.1093/logcom/exv037/2917815
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782195945963520
score 12.982451