Justification logic and audited computation
- Autores
- Bavera, Francisco Pedro; Bonelli, Eduardo Augusto
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Justification Logic ( JL ) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by justifications: the formula 〚s〛A states that s is a ‘reason’ for knowing/believing A . We study the computational interpretation of JL via the Curry–Howard isomorphism in which the modality 〚s〛A is interpreted as: s is a type derivation justifying the validity of A . The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them. This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is history-aware.
Fil: Bavera, Francisco Pedro. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes; Argentina. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Modal Logic
Justification Logic
Curry Howard
Lambda Calculus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/41571
Ver los metadatos del registro completo
| id |
CONICETDig_f7b1ade652491ed1595035bb97db40c4 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/41571 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Justification logic and audited computationBavera, Francisco PedroBonelli, Eduardo AugustoModal LogicJustification LogicCurry HowardLambda Calculushttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Justification Logic ( JL ) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by justifications: the formula 〚s〛A states that s is a ‘reason’ for knowing/believing A . We study the computational interpretation of JL via the Curry–Howard isomorphism in which the modality 〚s〛A is interpreted as: s is a type derivation justifying the validity of A . The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them. This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is history-aware.Fil: Bavera, Francisco Pedro. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes; Argentina. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41571Bavera, Francisco Pedro; Bonelli, Eduardo Augusto; Justification logic and audited computation ; Oxford University Press; Journal of Logic and Computation; 6-2015; 1-260955-792XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi//10.1093/logcom/exv037info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/advance-article/doi/10.1093/logcom/exv037/2917815info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:51:06Zoai:ri.conicet.gov.ar:11336/41571instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:51:07.239CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Justification logic and audited computation |
| title |
Justification logic and audited computation |
| spellingShingle |
Justification logic and audited computation Bavera, Francisco Pedro Modal Logic Justification Logic Curry Howard Lambda Calculus |
| title_short |
Justification logic and audited computation |
| title_full |
Justification logic and audited computation |
| title_fullStr |
Justification logic and audited computation |
| title_full_unstemmed |
Justification logic and audited computation |
| title_sort |
Justification logic and audited computation |
| dc.creator.none.fl_str_mv |
Bavera, Francisco Pedro Bonelli, Eduardo Augusto |
| author |
Bavera, Francisco Pedro |
| author_facet |
Bavera, Francisco Pedro Bonelli, Eduardo Augusto |
| author_role |
author |
| author2 |
Bonelli, Eduardo Augusto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Modal Logic Justification Logic Curry Howard Lambda Calculus |
| topic |
Modal Logic Justification Logic Curry Howard Lambda Calculus |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Justification Logic ( JL ) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by justifications: the formula 〚s〛A states that s is a ‘reason’ for knowing/believing A . We study the computational interpretation of JL via the Curry–Howard isomorphism in which the modality 〚s〛A is interpreted as: s is a type derivation justifying the validity of A . The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them. This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is history-aware. Fil: Bavera, Francisco Pedro. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes; Argentina. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Justification Logic ( JL ) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by justifications: the formula 〚s〛A states that s is a ‘reason’ for knowing/believing A . We study the computational interpretation of JL via the Curry–Howard isomorphism in which the modality 〚s〛A is interpreted as: s is a type derivation justifying the validity of A . The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them. This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is history-aware. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/41571 Bavera, Francisco Pedro; Bonelli, Eduardo Augusto; Justification logic and audited computation ; Oxford University Press; Journal of Logic and Computation; 6-2015; 1-26 0955-792X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/41571 |
| identifier_str_mv |
Bavera, Francisco Pedro; Bonelli, Eduardo Augusto; Justification logic and audited computation ; Oxford University Press; Journal of Logic and Computation; 6-2015; 1-26 0955-792X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi//10.1093/logcom/exv037 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/advance-article/doi/10.1093/logcom/exv037/2917815 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782195945963520 |
| score |
12.982451 |