The First-Order Hypothetical Logic of Proofs
- Autores
- Steren, Gabriela; Bonelli, Eduardo Augusto
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [[t]]A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[[t]]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [[t]]A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.
Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FIRST ORDER LOGIC OF PROOFS
CURRY HOWARD
NORMALIZATION
LAMBDA CALCULUS - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42132
Ver los metadatos del registro completo
| id |
CONICETDig_87395297ec247bb95395e5d6b44e62d1 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42132 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The First-Order Hypothetical Logic of ProofsSteren, GabrielaBonelli, Eduardo AugustoFIRST ORDER LOGIC OF PROOFSCURRY HOWARDNORMALIZATIONLAMBDA CALCULUShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [[t]]A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[[t]]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [[t]]A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given.Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2017-09info:eu-repo/date/embargoEnd/2018-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/42132Steren, Gabriela; Bonelli, Eduardo Augusto; The First-Order Hypothetical Logic of Proofs; Oxford University Press; Journal of Logic and Computation; 27; 4; 9-2017; 1023-10660955-792XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/logcom/exv090info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/article-abstract/27/4/1023/2917861info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:18:55Zoai:ri.conicet.gov.ar:11336/42132instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:18:56.245CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The First-Order Hypothetical Logic of Proofs |
| title |
The First-Order Hypothetical Logic of Proofs |
| spellingShingle |
The First-Order Hypothetical Logic of Proofs Steren, Gabriela FIRST ORDER LOGIC OF PROOFS CURRY HOWARD NORMALIZATION LAMBDA CALCULUS |
| title_short |
The First-Order Hypothetical Logic of Proofs |
| title_full |
The First-Order Hypothetical Logic of Proofs |
| title_fullStr |
The First-Order Hypothetical Logic of Proofs |
| title_full_unstemmed |
The First-Order Hypothetical Logic of Proofs |
| title_sort |
The First-Order Hypothetical Logic of Proofs |
| dc.creator.none.fl_str_mv |
Steren, Gabriela Bonelli, Eduardo Augusto |
| author |
Steren, Gabriela |
| author_facet |
Steren, Gabriela Bonelli, Eduardo Augusto |
| author_role |
author |
| author2 |
Bonelli, Eduardo Augusto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
FIRST ORDER LOGIC OF PROOFS CURRY HOWARD NORMALIZATION LAMBDA CALCULUS |
| topic |
FIRST ORDER LOGIC OF PROOFS CURRY HOWARD NORMALIZATION LAMBDA CALCULUS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [[t]]A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[[t]]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [[t]]A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given. Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
The Propositional Logic of Proofs (LP) is a modal logic in which the modality □A is revisited as [[t]]A , t being an expression that bears witness to the validity of A . It enjoys arithmetical soundness and completeness, can realize all S4 theorems and is capable of reflecting its own proofs ( ⊢A implies ⊢[[t]]A , for some t ). A presentation of first-order LP has recently been proposed, FOLP, which enjoys arithmetical soundness and has an exact provability semantics. A key notion in this presentation is how free variables are dealt with in a formula of the form [[t]]A(i) . We revisit this notion in the setting of a Natural Deduction presentation and propose a Curry–Howard correspondence for FOLP. A term assignment is provided and a proof of strong normalization is given. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-09 info:eu-repo/date/embargoEnd/2018-07-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42132 Steren, Gabriela; Bonelli, Eduardo Augusto; The First-Order Hypothetical Logic of Proofs; Oxford University Press; Journal of Logic and Computation; 27; 4; 9-2017; 1023-1066 0955-792X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/42132 |
| identifier_str_mv |
Steren, Gabriela; Bonelli, Eduardo Augusto; The First-Order Hypothetical Logic of Proofs; Oxford University Press; Journal of Logic and Computation; 27; 4; 9-2017; 1023-1066 0955-792X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/logcom/exv090 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/logcom/article-abstract/27/4/1023/2917861 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
embargoedAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781659359215616 |
| score |
12.982451 |