Hypothetical Logic of Proofs

Autores
Bonelli, Eduardo Augusto; Steren, Gabriela
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The logic of proofs is a refinement of modal logic introduced by Artemov in 1995 in which the modality ◻A is revisited as ⟦t⟧A where t is an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness and is capable of reflecting its own proofs (⊦A implies ⊦ ⟦t⟧A, for some t). We develop the Hypothetical Logic of Proofs, a reformulation of LP based on judgemental reasoning
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Materia
Lambda Calculus
Curry-Howard Isomorphism
Logic of Proofs
Modal Logic
Natural Deduction
Lambda Mu-Calculus
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/34300

id CONICETDig_7ab6f7e154f897f328fbad60601a665c
oai_identifier_str oai:ri.conicet.gov.ar:11336/34300
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hypothetical Logic of ProofsBonelli, Eduardo AugustoSteren, GabrielaLambda CalculusCurry-Howard IsomorphismLogic of ProofsModal LogicNatural DeductionLambda Mu-Calculushttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The logic of proofs is a refinement of modal logic introduced by Artemov in 1995 in which the modality ◻A is revisited as ⟦t⟧A where t is an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness and is capable of reflecting its own proofs (⊦A implies ⊦ ⟦t⟧A, for some t). We develop the Hypothetical Logic of Proofs, a reformulation of LP based on judgemental reasoningFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34300Bonelli, Eduardo Augusto; Steren, Gabriela; Hypothetical Logic of Proofs; Springer; Logica Universalis; 8; 1; 3-2014; 103-1401661-8297CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11787-014-0098-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s11787-014-0098-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:04Zoai:ri.conicet.gov.ar:11336/34300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:04.688CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hypothetical Logic of Proofs
title Hypothetical Logic of Proofs
spellingShingle Hypothetical Logic of Proofs
Bonelli, Eduardo Augusto
Lambda Calculus
Curry-Howard Isomorphism
Logic of Proofs
Modal Logic
Natural Deduction
Lambda Mu-Calculus
title_short Hypothetical Logic of Proofs
title_full Hypothetical Logic of Proofs
title_fullStr Hypothetical Logic of Proofs
title_full_unstemmed Hypothetical Logic of Proofs
title_sort Hypothetical Logic of Proofs
dc.creator.none.fl_str_mv Bonelli, Eduardo Augusto
Steren, Gabriela
author Bonelli, Eduardo Augusto
author_facet Bonelli, Eduardo Augusto
Steren, Gabriela
author_role author
author2 Steren, Gabriela
author2_role author
dc.subject.none.fl_str_mv Lambda Calculus
Curry-Howard Isomorphism
Logic of Proofs
Modal Logic
Natural Deduction
Lambda Mu-Calculus
topic Lambda Calculus
Curry-Howard Isomorphism
Logic of Proofs
Modal Logic
Natural Deduction
Lambda Mu-Calculus
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The logic of proofs is a refinement of modal logic introduced by Artemov in 1995 in which the modality ◻A is revisited as ⟦t⟧A where t is an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness and is capable of reflecting its own proofs (⊦A implies ⊦ ⟦t⟧A, for some t). We develop the Hypothetical Logic of Proofs, a reformulation of LP based on judgemental reasoning
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
description The logic of proofs is a refinement of modal logic introduced by Artemov in 1995 in which the modality ◻A is revisited as ⟦t⟧A where t is an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness and is capable of reflecting its own proofs (⊦A implies ⊦ ⟦t⟧A, for some t). We develop the Hypothetical Logic of Proofs, a reformulation of LP based on judgemental reasoning
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/34300
Bonelli, Eduardo Augusto; Steren, Gabriela; Hypothetical Logic of Proofs; Springer; Logica Universalis; 8; 1; 3-2014; 103-140
1661-8297
CONICET Digital
CONICET
url http://hdl.handle.net/11336/34300
identifier_str_mv Bonelli, Eduardo Augusto; Steren, Gabriela; Hypothetical Logic of Proofs; Springer; Logica Universalis; 8; 1; 3-2014; 103-140
1661-8297
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11787-014-0098-0
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11787-014-0098-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980932780294144
score 12.993085