Hypothetical Logic of Proofs
- Autores
- Bonelli, Eduardo Augusto; Steren, Gabriela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The logic of proofs is a refinement of modal logic introduced by Artemov in 1995 in which the modality ◻A is revisited as ⟦t⟧A where t is an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness and is capable of reflecting its own proofs (⊦A implies ⊦ ⟦t⟧A, for some t). We develop the Hypothetical Logic of Proofs, a reformulation of LP based on judgemental reasoning
Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina - Materia
-
Lambda Calculus
Curry-Howard Isomorphism
Logic of Proofs
Modal Logic
Natural Deduction
Lambda Mu-Calculus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/34300
Ver los metadatos del registro completo
id |
CONICETDig_7ab6f7e154f897f328fbad60601a665c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/34300 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hypothetical Logic of ProofsBonelli, Eduardo AugustoSteren, GabrielaLambda CalculusCurry-Howard IsomorphismLogic of ProofsModal LogicNatural DeductionLambda Mu-Calculushttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The logic of proofs is a refinement of modal logic introduced by Artemov in 1995 in which the modality ◻A is revisited as ⟦t⟧A where t is an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness and is capable of reflecting its own proofs (⊦A implies ⊦ ⟦t⟧A, for some t). We develop the Hypothetical Logic of Proofs, a reformulation of LP based on judgemental reasoningFil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/34300Bonelli, Eduardo Augusto; Steren, Gabriela; Hypothetical Logic of Proofs; Springer; Logica Universalis; 8; 1; 3-2014; 103-1401661-8297CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11787-014-0098-0info:eu-repo/semantics/altIdentifier/doi/10.1007/s11787-014-0098-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:04Zoai:ri.conicet.gov.ar:11336/34300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:04.688CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hypothetical Logic of Proofs |
title |
Hypothetical Logic of Proofs |
spellingShingle |
Hypothetical Logic of Proofs Bonelli, Eduardo Augusto Lambda Calculus Curry-Howard Isomorphism Logic of Proofs Modal Logic Natural Deduction Lambda Mu-Calculus |
title_short |
Hypothetical Logic of Proofs |
title_full |
Hypothetical Logic of Proofs |
title_fullStr |
Hypothetical Logic of Proofs |
title_full_unstemmed |
Hypothetical Logic of Proofs |
title_sort |
Hypothetical Logic of Proofs |
dc.creator.none.fl_str_mv |
Bonelli, Eduardo Augusto Steren, Gabriela |
author |
Bonelli, Eduardo Augusto |
author_facet |
Bonelli, Eduardo Augusto Steren, Gabriela |
author_role |
author |
author2 |
Steren, Gabriela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Lambda Calculus Curry-Howard Isomorphism Logic of Proofs Modal Logic Natural Deduction Lambda Mu-Calculus |
topic |
Lambda Calculus Curry-Howard Isomorphism Logic of Proofs Modal Logic Natural Deduction Lambda Mu-Calculus |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The logic of proofs is a refinement of modal logic introduced by Artemov in 1995 in which the modality ◻A is revisited as ⟦t⟧A where t is an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness and is capable of reflecting its own proofs (⊦A implies ⊦ ⟦t⟧A, for some t). We develop the Hypothetical Logic of Proofs, a reformulation of LP based on judgemental reasoning Fil: Bonelli, Eduardo Augusto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires; Argentina Fil: Steren, Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina |
description |
The logic of proofs is a refinement of modal logic introduced by Artemov in 1995 in which the modality ◻A is revisited as ⟦t⟧A where t is an expression that bears witness to the validity of A. It enjoys arithmetical soundness and completeness and is capable of reflecting its own proofs (⊦A implies ⊦ ⟦t⟧A, for some t). We develop the Hypothetical Logic of Proofs, a reformulation of LP based on judgemental reasoning |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/34300 Bonelli, Eduardo Augusto; Steren, Gabriela; Hypothetical Logic of Proofs; Springer; Logica Universalis; 8; 1; 3-2014; 103-140 1661-8297 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/34300 |
identifier_str_mv |
Bonelli, Eduardo Augusto; Steren, Gabriela; Hypothetical Logic of Proofs; Springer; Logica Universalis; 8; 1; 3-2014; 103-140 1661-8297 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs11787-014-0098-0 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11787-014-0098-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980932780294144 |
score |
12.993085 |