Conjugacy theorems for loop reductive group schemes and Lie algebras

Autores
Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.
Fil: Chernousov, Vladimir. University of Alberta; Canadá
Fil: Gille, Philippe. University of Alberta; Canadá
Fil: Pianzola, Arturo. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
BUILDING
CONJUGACY
LAURENT POLYNOMIALS
LOOP REDUCTIVE GROUP SCHEME
NON-ABELIAN COHOMOLOGY
TORSOR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112444

id CONICETDig_193010f5cce13c0a5c72fe6270152dbc
oai_identifier_str oai:ri.conicet.gov.ar:11336/112444
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Conjugacy theorems for loop reductive group schemes and Lie algebrasChernousov, VladimirGille, PhilippePianzola, ArturoBUILDINGCONJUGACYLAURENT POLYNOMIALSLOOP REDUCTIVE GROUP SCHEMENON-ABELIAN COHOMOLOGYTORSORhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.Fil: Chernousov, Vladimir. University of Alberta; CanadáFil: Gille, Philippe. University of Alberta; CanadáFil: Pianzola, Arturo. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112444Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-3241664-3615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-014-0052-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-014-0052-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:28Zoai:ri.conicet.gov.ar:11336/112444instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:28.526CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Conjugacy theorems for loop reductive group schemes and Lie algebras
title Conjugacy theorems for loop reductive group schemes and Lie algebras
spellingShingle Conjugacy theorems for loop reductive group schemes and Lie algebras
Chernousov, Vladimir
BUILDING
CONJUGACY
LAURENT POLYNOMIALS
LOOP REDUCTIVE GROUP SCHEME
NON-ABELIAN COHOMOLOGY
TORSOR
title_short Conjugacy theorems for loop reductive group schemes and Lie algebras
title_full Conjugacy theorems for loop reductive group schemes and Lie algebras
title_fullStr Conjugacy theorems for loop reductive group schemes and Lie algebras
title_full_unstemmed Conjugacy theorems for loop reductive group schemes and Lie algebras
title_sort Conjugacy theorems for loop reductive group schemes and Lie algebras
dc.creator.none.fl_str_mv Chernousov, Vladimir
Gille, Philippe
Pianzola, Arturo
author Chernousov, Vladimir
author_facet Chernousov, Vladimir
Gille, Philippe
Pianzola, Arturo
author_role author
author2 Gille, Philippe
Pianzola, Arturo
author2_role author
author
dc.subject.none.fl_str_mv BUILDING
CONJUGACY
LAURENT POLYNOMIALS
LOOP REDUCTIVE GROUP SCHEME
NON-ABELIAN COHOMOLOGY
TORSOR
topic BUILDING
CONJUGACY
LAURENT POLYNOMIALS
LOOP REDUCTIVE GROUP SCHEME
NON-ABELIAN COHOMOLOGY
TORSOR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.
Fil: Chernousov, Vladimir. University of Alberta; Canadá
Fil: Gille, Philippe. University of Alberta; Canadá
Fil: Pianzola, Arturo. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112444
Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-324
1664-3615
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112444
identifier_str_mv Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-324
1664-3615
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-014-0052-8
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-014-0052-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269345636417536
score 13.13397