Conjugacy theorems for loop reductive group schemes and Lie algebras
- Autores
- Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.
Fil: Chernousov, Vladimir. University of Alberta; Canadá
Fil: Gille, Philippe. University of Alberta; Canadá
Fil: Pianzola, Arturo. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BUILDING
CONJUGACY
LAURENT POLYNOMIALS
LOOP REDUCTIVE GROUP SCHEME
NON-ABELIAN COHOMOLOGY
TORSOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112444
Ver los metadatos del registro completo
id |
CONICETDig_193010f5cce13c0a5c72fe6270152dbc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112444 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Conjugacy theorems for loop reductive group schemes and Lie algebrasChernousov, VladimirGille, PhilippePianzola, ArturoBUILDINGCONJUGACYLAURENT POLYNOMIALSLOOP REDUCTIVE GROUP SCHEMENON-ABELIAN COHOMOLOGYTORSORhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest.Fil: Chernousov, Vladimir. University of Alberta; CanadáFil: Gille, Philippe. University of Alberta; CanadáFil: Pianzola, Arturo. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112444Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-3241664-3615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-014-0052-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-014-0052-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:28Zoai:ri.conicet.gov.ar:11336/112444instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:28.526CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Conjugacy theorems for loop reductive group schemes and Lie algebras |
title |
Conjugacy theorems for loop reductive group schemes and Lie algebras |
spellingShingle |
Conjugacy theorems for loop reductive group schemes and Lie algebras Chernousov, Vladimir BUILDING CONJUGACY LAURENT POLYNOMIALS LOOP REDUCTIVE GROUP SCHEME NON-ABELIAN COHOMOLOGY TORSOR |
title_short |
Conjugacy theorems for loop reductive group schemes and Lie algebras |
title_full |
Conjugacy theorems for loop reductive group schemes and Lie algebras |
title_fullStr |
Conjugacy theorems for loop reductive group schemes and Lie algebras |
title_full_unstemmed |
Conjugacy theorems for loop reductive group schemes and Lie algebras |
title_sort |
Conjugacy theorems for loop reductive group schemes and Lie algebras |
dc.creator.none.fl_str_mv |
Chernousov, Vladimir Gille, Philippe Pianzola, Arturo |
author |
Chernousov, Vladimir |
author_facet |
Chernousov, Vladimir Gille, Philippe Pianzola, Arturo |
author_role |
author |
author2 |
Gille, Philippe Pianzola, Arturo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BUILDING CONJUGACY LAURENT POLYNOMIALS LOOP REDUCTIVE GROUP SCHEME NON-ABELIAN COHOMOLOGY TORSOR |
topic |
BUILDING CONJUGACY LAURENT POLYNOMIALS LOOP REDUCTIVE GROUP SCHEME NON-ABELIAN COHOMOLOGY TORSOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest. Fil: Chernousov, Vladimir. University of Alberta; Canadá Fil: Gille, Philippe. University of Alberta; Canadá Fil: Pianzola, Arturo. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The conjugacy of split Cartan subalgebras in the finite-dimensional simple case (Chevalley) and in the symmetrizable Kac–Moody case (Peterson–Kac) are fundamental results of the theory of Lie algebras. Among the Kac–Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras—extended affine Lie algebras—that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson–Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of Bruhat–Tits on buildings. The main ingredient of our conjugacy proof is the classification of loop torsors over Laurent polynomial rings, a result of its own interest. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112444 Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-324 1664-3615 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112444 |
identifier_str_mv |
Chernousov, Vladimir; Gille, Philippe; Pianzola, Arturo; Conjugacy theorems for loop reductive group schemes and Lie algebras; Springer; Bulletin of Mathematical Sciences; 4; 2; 1-2014; 281-324 1664-3615 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-014-0052-8 info:eu-repo/semantics/altIdentifier/doi/10.1007/s13373-014-0052-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269345636417536 |
score |
13.13397 |