Affine Pieri rule for periodic Macdonald spherical functions and fusion rings

Autores
van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let gˆ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type BCˆn=A2n(2)). We present an affine Pieri rule for a basis of periodic Macdonald spherical functions associated with gˆ. In type Aˆn−1=An−1(1) the formula in question reproduces an affine Pieri rule for cylindric Hall-Littlewood polynomials due to Korff, which at t=0 specializes in turn to a well-known Pieri formula in the fusion ring of genus zero slˆ(n)c-Wess-Zumino-Witten conformal field theories.
Fil: van Diejen, Jan Felipe. Universidad de Talca; Chile
Fil: Emsiz, Erdal. Delft University of Technology; Países Bajos
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
AFFINE HECKE ALGEBRAS
AFFINE LIE ALGEBRAS
MACDONALD SPHERICAL FUNCTIONS
WESS-ZUMINO-WITTEN FUSION RINGS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/172581

id CONICETDig_9a2761485bc3bbe22a3da2ad093c2077
oai_identifier_str oai:ri.conicet.gov.ar:11336/172581
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Affine Pieri rule for periodic Macdonald spherical functions and fusion ringsvan Diejen, Jan FelipeEmsiz, ErdalZurrián, Ignacio NahuelAFFINE HECKE ALGEBRASAFFINE LIE ALGEBRASMACDONALD SPHERICAL FUNCTIONSWESS-ZUMINO-WITTEN FUSION RINGShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let gˆ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type BCˆn=A2n(2)). We present an affine Pieri rule for a basis of periodic Macdonald spherical functions associated with gˆ. In type Aˆn−1=An−1(1) the formula in question reproduces an affine Pieri rule for cylindric Hall-Littlewood polynomials due to Korff, which at t=0 specializes in turn to a well-known Pieri formula in the fusion ring of genus zero slˆ(n)c-Wess-Zumino-Witten conformal field theories.Fil: van Diejen, Jan Felipe. Universidad de Talca; ChileFil: Emsiz, Erdal. Delft University of Technology; Países BajosFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAcademic Press Inc Elsevier Science2021-12-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172581van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Affine Pieri rule for periodic Macdonald spherical functions and fusion rings; Academic Press Inc Elsevier Science; Advances in Mathematics; 392; 3-12-2021; 1-300001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870821004667?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2021.108027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:10Zoai:ri.conicet.gov.ar:11336/172581instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:10.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
title Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
spellingShingle Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
van Diejen, Jan Felipe
AFFINE HECKE ALGEBRAS
AFFINE LIE ALGEBRAS
MACDONALD SPHERICAL FUNCTIONS
WESS-ZUMINO-WITTEN FUSION RINGS
title_short Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
title_full Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
title_fullStr Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
title_full_unstemmed Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
title_sort Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
dc.creator.none.fl_str_mv van Diejen, Jan Felipe
Emsiz, Erdal
Zurrián, Ignacio Nahuel
author van Diejen, Jan Felipe
author_facet van Diejen, Jan Felipe
Emsiz, Erdal
Zurrián, Ignacio Nahuel
author_role author
author2 Emsiz, Erdal
Zurrián, Ignacio Nahuel
author2_role author
author
dc.subject.none.fl_str_mv AFFINE HECKE ALGEBRAS
AFFINE LIE ALGEBRAS
MACDONALD SPHERICAL FUNCTIONS
WESS-ZUMINO-WITTEN FUSION RINGS
topic AFFINE HECKE ALGEBRAS
AFFINE LIE ALGEBRAS
MACDONALD SPHERICAL FUNCTIONS
WESS-ZUMINO-WITTEN FUSION RINGS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let gˆ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type BCˆn=A2n(2)). We present an affine Pieri rule for a basis of periodic Macdonald spherical functions associated with gˆ. In type Aˆn−1=An−1(1) the formula in question reproduces an affine Pieri rule for cylindric Hall-Littlewood polynomials due to Korff, which at t=0 specializes in turn to a well-known Pieri formula in the fusion ring of genus zero slˆ(n)c-Wess-Zumino-Witten conformal field theories.
Fil: van Diejen, Jan Felipe. Universidad de Talca; Chile
Fil: Emsiz, Erdal. Delft University of Technology; Países Bajos
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description Let gˆ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type BCˆn=A2n(2)). We present an affine Pieri rule for a basis of periodic Macdonald spherical functions associated with gˆ. In type Aˆn−1=An−1(1) the formula in question reproduces an affine Pieri rule for cylindric Hall-Littlewood polynomials due to Korff, which at t=0 specializes in turn to a well-known Pieri formula in the fusion ring of genus zero slˆ(n)c-Wess-Zumino-Witten conformal field theories.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/172581
van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Affine Pieri rule for periodic Macdonald spherical functions and fusion rings; Academic Press Inc Elsevier Science; Advances in Mathematics; 392; 3-12-2021; 1-30
0001-8708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/172581
identifier_str_mv van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Affine Pieri rule for periodic Macdonald spherical functions and fusion rings; Academic Press Inc Elsevier Science; Advances in Mathematics; 392; 3-12-2021; 1-30
0001-8708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870821004667?via%3Dihub
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2021.108027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269206000697344
score 13.13397