Affine Pieri rule for periodic Macdonald spherical functions and fusion rings
- Autores
- van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let gˆ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type BCˆn=A2n(2)). We present an affine Pieri rule for a basis of periodic Macdonald spherical functions associated with gˆ. In type Aˆn−1=An−1(1) the formula in question reproduces an affine Pieri rule for cylindric Hall-Littlewood polynomials due to Korff, which at t=0 specializes in turn to a well-known Pieri formula in the fusion ring of genus zero slˆ(n)c-Wess-Zumino-Witten conformal field theories.
Fil: van Diejen, Jan Felipe. Universidad de Talca; Chile
Fil: Emsiz, Erdal. Delft University of Technology; Países Bajos
Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
AFFINE HECKE ALGEBRAS
AFFINE LIE ALGEBRAS
MACDONALD SPHERICAL FUNCTIONS
WESS-ZUMINO-WITTEN FUSION RINGS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172581
Ver los metadatos del registro completo
id |
CONICETDig_9a2761485bc3bbe22a3da2ad093c2077 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172581 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Affine Pieri rule for periodic Macdonald spherical functions and fusion ringsvan Diejen, Jan FelipeEmsiz, ErdalZurrián, Ignacio NahuelAFFINE HECKE ALGEBRASAFFINE LIE ALGEBRASMACDONALD SPHERICAL FUNCTIONSWESS-ZUMINO-WITTEN FUSION RINGShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let gˆ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type BCˆn=A2n(2)). We present an affine Pieri rule for a basis of periodic Macdonald spherical functions associated with gˆ. In type Aˆn−1=An−1(1) the formula in question reproduces an affine Pieri rule for cylindric Hall-Littlewood polynomials due to Korff, which at t=0 specializes in turn to a well-known Pieri formula in the fusion ring of genus zero slˆ(n)c-Wess-Zumino-Witten conformal field theories.Fil: van Diejen, Jan Felipe. Universidad de Talca; ChileFil: Emsiz, Erdal. Delft University of Technology; Países BajosFil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAcademic Press Inc Elsevier Science2021-12-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172581van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Affine Pieri rule for periodic Macdonald spherical functions and fusion rings; Academic Press Inc Elsevier Science; Advances in Mathematics; 392; 3-12-2021; 1-300001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870821004667?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2021.108027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:10Zoai:ri.conicet.gov.ar:11336/172581instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:10.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Affine Pieri rule for periodic Macdonald spherical functions and fusion rings |
title |
Affine Pieri rule for periodic Macdonald spherical functions and fusion rings |
spellingShingle |
Affine Pieri rule for periodic Macdonald spherical functions and fusion rings van Diejen, Jan Felipe AFFINE HECKE ALGEBRAS AFFINE LIE ALGEBRAS MACDONALD SPHERICAL FUNCTIONS WESS-ZUMINO-WITTEN FUSION RINGS |
title_short |
Affine Pieri rule for periodic Macdonald spherical functions and fusion rings |
title_full |
Affine Pieri rule for periodic Macdonald spherical functions and fusion rings |
title_fullStr |
Affine Pieri rule for periodic Macdonald spherical functions and fusion rings |
title_full_unstemmed |
Affine Pieri rule for periodic Macdonald spherical functions and fusion rings |
title_sort |
Affine Pieri rule for periodic Macdonald spherical functions and fusion rings |
dc.creator.none.fl_str_mv |
van Diejen, Jan Felipe Emsiz, Erdal Zurrián, Ignacio Nahuel |
author |
van Diejen, Jan Felipe |
author_facet |
van Diejen, Jan Felipe Emsiz, Erdal Zurrián, Ignacio Nahuel |
author_role |
author |
author2 |
Emsiz, Erdal Zurrián, Ignacio Nahuel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AFFINE HECKE ALGEBRAS AFFINE LIE ALGEBRAS MACDONALD SPHERICAL FUNCTIONS WESS-ZUMINO-WITTEN FUSION RINGS |
topic |
AFFINE HECKE ALGEBRAS AFFINE LIE ALGEBRAS MACDONALD SPHERICAL FUNCTIONS WESS-ZUMINO-WITTEN FUSION RINGS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let gˆ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type BCˆn=A2n(2)). We present an affine Pieri rule for a basis of periodic Macdonald spherical functions associated with gˆ. In type Aˆn−1=An−1(1) the formula in question reproduces an affine Pieri rule for cylindric Hall-Littlewood polynomials due to Korff, which at t=0 specializes in turn to a well-known Pieri formula in the fusion ring of genus zero slˆ(n)c-Wess-Zumino-Witten conformal field theories. Fil: van Diejen, Jan Felipe. Universidad de Talca; Chile Fil: Emsiz, Erdal. Delft University of Technology; Países Bajos Fil: Zurrián, Ignacio Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
Let gˆ be an untwisted affine Lie algebra or the twisted counterpart thereof (which excludes the affine Lie algebras of type BCˆn=A2n(2)). We present an affine Pieri rule for a basis of periodic Macdonald spherical functions associated with gˆ. In type Aˆn−1=An−1(1) the formula in question reproduces an affine Pieri rule for cylindric Hall-Littlewood polynomials due to Korff, which at t=0 specializes in turn to a well-known Pieri formula in the fusion ring of genus zero slˆ(n)c-Wess-Zumino-Witten conformal field theories. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172581 van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Affine Pieri rule for periodic Macdonald spherical functions and fusion rings; Academic Press Inc Elsevier Science; Advances in Mathematics; 392; 3-12-2021; 1-30 0001-8708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172581 |
identifier_str_mv |
van Diejen, Jan Felipe; Emsiz, Erdal; Zurrián, Ignacio Nahuel; Affine Pieri rule for periodic Macdonald spherical functions and fusion rings; Academic Press Inc Elsevier Science; Advances in Mathematics; 392; 3-12-2021; 1-30 0001-8708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870821004667?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2021.108027 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269206000697344 |
score |
13.13397 |